dbd949307e
There's not really a use at the moment for making this configurable, and once bind_windows.go behaves like bind_std.go, we'll be able to use constants everywhere. So begin that simplification now. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
613 lines
20 KiB
Go
613 lines
20 KiB
Go
/* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
|
|
*/
|
|
|
|
package tun
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
"unsafe"
|
|
|
|
"golang.org/x/sys/unix"
|
|
"golang.zx2c4.com/wireguard/conn"
|
|
)
|
|
|
|
const tcpFlagsOffset = 13
|
|
|
|
const (
|
|
tcpFlagFIN uint8 = 0x01
|
|
tcpFlagPSH uint8 = 0x08
|
|
tcpFlagACK uint8 = 0x10
|
|
)
|
|
|
|
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
|
|
// kernel symbol is virtio_net_hdr.
|
|
type virtioNetHdr struct {
|
|
flags uint8
|
|
gsoType uint8
|
|
hdrLen uint16
|
|
gsoSize uint16
|
|
csumStart uint16
|
|
csumOffset uint16
|
|
}
|
|
|
|
func (v *virtioNetHdr) decode(b []byte) error {
|
|
if len(b) < virtioNetHdrLen {
|
|
return io.ErrShortBuffer
|
|
}
|
|
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
|
|
return nil
|
|
}
|
|
|
|
func (v *virtioNetHdr) encode(b []byte) error {
|
|
if len(b) < virtioNetHdrLen {
|
|
return io.ErrShortBuffer
|
|
}
|
|
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
|
|
return nil
|
|
}
|
|
|
|
const (
|
|
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
|
|
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
|
|
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
|
|
)
|
|
|
|
// flowKey represents the key for a flow.
|
|
type flowKey struct {
|
|
srcAddr, dstAddr [16]byte
|
|
srcPort, dstPort uint16
|
|
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
|
|
}
|
|
|
|
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
|
|
type tcpGROTable struct {
|
|
itemsByFlow map[flowKey][]tcpGROItem
|
|
itemsPool [][]tcpGROItem
|
|
}
|
|
|
|
func newTCPGROTable() *tcpGROTable {
|
|
t := &tcpGROTable{
|
|
itemsByFlow: make(map[flowKey][]tcpGROItem, conn.IdealBatchSize),
|
|
itemsPool: make([][]tcpGROItem, conn.IdealBatchSize),
|
|
}
|
|
for i := range t.itemsPool {
|
|
t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
|
|
}
|
|
return t
|
|
}
|
|
|
|
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
|
|
key := flowKey{}
|
|
addrSize := dstAddr - srcAddr
|
|
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
|
|
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
|
|
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
|
|
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
|
|
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
|
|
return key
|
|
}
|
|
|
|
// lookupOrInsert looks up a flow for the provided packet and metadata,
|
|
// returning the packets found for the flow, or inserting a new one if none
|
|
// is found.
|
|
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex int) ([]tcpGROItem, bool) {
|
|
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
|
items, ok := t.itemsByFlow[key]
|
|
if ok {
|
|
return items, ok
|
|
}
|
|
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
|
|
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex)
|
|
return nil, false
|
|
}
|
|
|
|
// insert an item in the table for the provided packet and packet metadata.
|
|
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, buffsIndex int) {
|
|
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
|
|
item := tcpGROItem{
|
|
key: key,
|
|
buffsIndex: uint16(buffsIndex),
|
|
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
|
|
iphLen: uint8(tcphOffset),
|
|
tcphLen: uint8(tcphLen),
|
|
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
|
|
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
|
|
}
|
|
items, ok := t.itemsByFlow[key]
|
|
if !ok {
|
|
items = t.newItems()
|
|
}
|
|
items = append(items, item)
|
|
t.itemsByFlow[key] = items
|
|
}
|
|
|
|
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
|
|
items, _ := t.itemsByFlow[item.key]
|
|
items[i] = item
|
|
}
|
|
|
|
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
|
|
items, _ := t.itemsByFlow[key]
|
|
items = append(items[:i], items[i+1:]...)
|
|
t.itemsByFlow[key] = items
|
|
}
|
|
|
|
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
|
|
// of a GRO evaluation across a vector of packets.
|
|
type tcpGROItem struct {
|
|
key flowKey
|
|
sentSeq uint32 // the sequence number
|
|
buffsIndex uint16 // the index into the original buffs slice
|
|
numMerged uint16 // the number of packets merged into this item
|
|
gsoSize uint16 // payload size
|
|
iphLen uint8 // ip header len
|
|
tcphLen uint8 // tcp header len
|
|
pshSet bool // psh flag is set
|
|
}
|
|
|
|
func (t *tcpGROTable) newItems() []tcpGROItem {
|
|
var items []tcpGROItem
|
|
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
|
|
return items
|
|
}
|
|
|
|
func (t *tcpGROTable) reset() {
|
|
for k, items := range t.itemsByFlow {
|
|
items = items[:0]
|
|
t.itemsPool = append(t.itemsPool, items)
|
|
delete(t.itemsByFlow, k)
|
|
}
|
|
}
|
|
|
|
// canCoalesce represents the outcome of checking if two TCP packets are
|
|
// candidates for coalescing.
|
|
type canCoalesce int
|
|
|
|
const (
|
|
coalescePrepend canCoalesce = -1
|
|
coalesceUnavailable canCoalesce = 0
|
|
coalesceAppend canCoalesce = 1
|
|
)
|
|
|
|
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
|
|
// described by item. This function makes considerations that match the kernel's
|
|
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
|
|
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, buffs [][]byte, buffsOffset int) canCoalesce {
|
|
pktTarget := buffs[item.buffsIndex][buffsOffset:]
|
|
if tcphLen != item.tcphLen {
|
|
// cannot coalesce with unequal tcp options len
|
|
return coalesceUnavailable
|
|
}
|
|
if tcphLen > 20 {
|
|
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
|
|
// cannot coalesce with unequal tcp options
|
|
return coalesceUnavailable
|
|
}
|
|
}
|
|
if pkt[1] != pktTarget[1] {
|
|
// cannot coalesce with unequal ToS values
|
|
return coalesceUnavailable
|
|
}
|
|
if pkt[6]>>5 != pktTarget[6]>>5 {
|
|
// cannot coalesce with unequal DF or reserved bits. MF is checked
|
|
// further up the stack.
|
|
return coalesceUnavailable
|
|
}
|
|
// seq adjacency
|
|
lhsLen := item.gsoSize
|
|
lhsLen += item.numMerged * item.gsoSize
|
|
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
|
|
if item.pshSet {
|
|
// We cannot append to a segment that has the PSH flag set, PSH
|
|
// can only be set on the final segment in a reassembled group.
|
|
return coalesceUnavailable
|
|
}
|
|
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
|
|
// A smaller than gsoSize packet has been appended previously.
|
|
// Nothing can come after a smaller packet on the end.
|
|
return coalesceUnavailable
|
|
}
|
|
if gsoSize > item.gsoSize {
|
|
// We cannot have a larger packet following a smaller one.
|
|
return coalesceUnavailable
|
|
}
|
|
return coalesceAppend
|
|
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
|
|
if pshSet {
|
|
// We cannot prepend with a segment that has the PSH flag set, PSH
|
|
// can only be set on the final segment in a reassembled group.
|
|
return coalesceUnavailable
|
|
}
|
|
if gsoSize < item.gsoSize {
|
|
// We cannot have a larger packet following a smaller one.
|
|
return coalesceUnavailable
|
|
}
|
|
if gsoSize > item.gsoSize && item.numMerged > 0 {
|
|
// There's at least one previous merge, and we're larger than all
|
|
// previous. This would put multiple smaller packets on the end.
|
|
return coalesceUnavailable
|
|
}
|
|
return coalescePrepend
|
|
}
|
|
return coalesceUnavailable
|
|
}
|
|
|
|
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
|
|
srcAddrAt := ipv4SrcAddrOffset
|
|
addrSize := 4
|
|
if isV6 {
|
|
srcAddrAt = ipv6SrcAddrOffset
|
|
addrSize = 16
|
|
}
|
|
tcpTotalLen := uint16(len(pkt) - int(iphLen))
|
|
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
|
|
return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
|
|
}
|
|
|
|
// coalesceResult represents the result of attempting to coalesce two TCP
|
|
// packets.
|
|
type coalesceResult int
|
|
|
|
const (
|
|
coalesceInsufficientCap coalesceResult = 0
|
|
coalescePSHEnding coalesceResult = 1
|
|
coalesceItemInvalidCSum coalesceResult = 2
|
|
coalescePktInvalidCSum coalesceResult = 3
|
|
coalesceSuccess coalesceResult = 4
|
|
)
|
|
|
|
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
|
|
// item, returning the outcome. This function may swap buffs elements in the
|
|
// event of a prepend as item's buffs index is already being tracked for writing
|
|
// to a Device.
|
|
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, buffs [][]byte, buffsOffset int, isV6 bool) coalesceResult {
|
|
var pktHead []byte // the packet that will end up at the front
|
|
headersLen := item.iphLen + item.tcphLen
|
|
coalescedLen := len(buffs[item.buffsIndex][buffsOffset:]) + len(pkt) - int(headersLen)
|
|
|
|
// Copy data
|
|
if mode == coalescePrepend {
|
|
pktHead = pkt
|
|
if cap(pkt)-buffsOffset < coalescedLen {
|
|
// We don't want to allocate a new underlying array if capacity is
|
|
// too small.
|
|
return coalesceInsufficientCap
|
|
}
|
|
if pshSet {
|
|
return coalescePSHEnding
|
|
}
|
|
if item.numMerged == 0 {
|
|
if !tcpChecksumValid(buffs[item.buffsIndex][buffsOffset:], item.iphLen, isV6) {
|
|
return coalesceItemInvalidCSum
|
|
}
|
|
}
|
|
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
|
|
return coalescePktInvalidCSum
|
|
}
|
|
item.sentSeq = seq
|
|
extendBy := coalescedLen - len(pktHead)
|
|
buffs[pktBuffsIndex] = append(buffs[pktBuffsIndex], make([]byte, extendBy)...)
|
|
copy(buffs[pktBuffsIndex][buffsOffset+len(pkt):], buffs[item.buffsIndex][buffsOffset+int(headersLen):])
|
|
// Flip the slice headers in buffs as part of prepend. The index of item
|
|
// is already being tracked for writing.
|
|
buffs[item.buffsIndex], buffs[pktBuffsIndex] = buffs[pktBuffsIndex], buffs[item.buffsIndex]
|
|
} else {
|
|
pktHead = buffs[item.buffsIndex][buffsOffset:]
|
|
if cap(pktHead)-buffsOffset < coalescedLen {
|
|
// We don't want to allocate a new underlying array if capacity is
|
|
// too small.
|
|
return coalesceInsufficientCap
|
|
}
|
|
if item.numMerged == 0 {
|
|
if !tcpChecksumValid(buffs[item.buffsIndex][buffsOffset:], item.iphLen, isV6) {
|
|
return coalesceItemInvalidCSum
|
|
}
|
|
}
|
|
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
|
|
return coalescePktInvalidCSum
|
|
}
|
|
if pshSet {
|
|
// We are appending a segment with PSH set.
|
|
item.pshSet = pshSet
|
|
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
|
|
}
|
|
extendBy := len(pkt) - int(headersLen)
|
|
buffs[item.buffsIndex] = append(buffs[item.buffsIndex], make([]byte, extendBy)...)
|
|
copy(buffs[item.buffsIndex][buffsOffset+len(pktHead):], pkt[headersLen:])
|
|
}
|
|
|
|
if gsoSize > item.gsoSize {
|
|
item.gsoSize = gsoSize
|
|
}
|
|
hdr := virtioNetHdr{
|
|
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
|
|
hdrLen: uint16(headersLen),
|
|
gsoSize: uint16(item.gsoSize),
|
|
csumStart: uint16(item.iphLen),
|
|
csumOffset: 16,
|
|
}
|
|
|
|
// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
|
|
// (IPv4) header checksum.
|
|
if isV6 {
|
|
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
|
|
binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
|
|
} else {
|
|
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
|
|
pktHead[10], pktHead[11] = 0, 0 // clear checksum field
|
|
binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
|
|
iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum
|
|
binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field
|
|
}
|
|
hdr.encode(buffs[item.buffsIndex][buffsOffset-virtioNetHdrLen:])
|
|
|
|
// Calculate the pseudo header checksum and place it at the TCP checksum
|
|
// offset. Downstream checksum offloading will combine this with computation
|
|
// of the tcp header and payload checksum.
|
|
addrLen := 4
|
|
addrOffset := ipv4SrcAddrOffset
|
|
if isV6 {
|
|
addrLen = 16
|
|
addrOffset = ipv6SrcAddrOffset
|
|
}
|
|
srcAddrAt := buffsOffset + addrOffset
|
|
srcAddr := buffs[item.buffsIndex][srcAddrAt : srcAddrAt+addrLen]
|
|
dstAddr := buffs[item.buffsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
|
|
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
|
|
binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
|
|
|
|
item.numMerged++
|
|
return coalesceSuccess
|
|
}
|
|
|
|
const (
|
|
ipv4FlagMoreFragments = 0x80
|
|
)
|
|
|
|
const (
|
|
ipv4SrcAddrOffset = 12
|
|
ipv6SrcAddrOffset = 8
|
|
maxUint16 = 1<<16 - 1
|
|
)
|
|
|
|
// tcpGRO evaluates the TCP packet at pktI in buffs for coalescing with
|
|
// existing packets tracked in table. It will return false when pktI is not
|
|
// coalesced, otherwise true. This indicates to the caller if buffs[pktI]
|
|
// should be written to the Device.
|
|
func tcpGRO(buffs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
|
|
pkt := buffs[pktI][offset:]
|
|
if len(pkt) > maxUint16 {
|
|
// A valid IPv4 or IPv6 packet will never exceed this.
|
|
return false
|
|
}
|
|
iphLen := int((pkt[0] & 0x0F) * 4)
|
|
if isV6 {
|
|
iphLen = 40
|
|
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
|
|
if ipv6HPayloadLen != len(pkt)-iphLen {
|
|
return false
|
|
}
|
|
} else {
|
|
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
|
|
if totalLen != len(pkt) {
|
|
return false
|
|
}
|
|
if iphLen < 20 || iphLen > 60 {
|
|
return false
|
|
}
|
|
}
|
|
if len(pkt) < iphLen {
|
|
return false
|
|
}
|
|
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
|
|
if tcphLen < 20 || tcphLen > 60 {
|
|
return false
|
|
}
|
|
if len(pkt) < iphLen+tcphLen {
|
|
return false
|
|
}
|
|
if !isV6 {
|
|
if pkt[6]&ipv4FlagMoreFragments != 0 || (pkt[6]<<3 != 0 || pkt[7] != 0) {
|
|
// no GRO support for fragmented segments for now
|
|
return false
|
|
}
|
|
}
|
|
tcpFlags := pkt[iphLen+tcpFlagsOffset]
|
|
var pshSet bool
|
|
// not a candidate if any non-ACK flags (except PSH+ACK) are set
|
|
if tcpFlags != tcpFlagACK {
|
|
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
|
|
return false
|
|
}
|
|
pshSet = true
|
|
}
|
|
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
|
|
// not a candidate if payload len is 0
|
|
if gsoSize < 1 {
|
|
return false
|
|
}
|
|
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
|
|
srcAddrOffset := ipv4SrcAddrOffset
|
|
addrLen := 4
|
|
if isV6 {
|
|
srcAddrOffset = ipv6SrcAddrOffset
|
|
addrLen = 16
|
|
}
|
|
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
|
if !existing {
|
|
return false
|
|
}
|
|
for i := len(items) - 1; i >= 0; i-- {
|
|
// In the best case of packets arriving in order iterating in reverse is
|
|
// more efficient if there are multiple items for a given flow. This
|
|
// also enables a natural table.deleteAt() in the
|
|
// coalesceItemInvalidCSum case without the need for index tracking.
|
|
// This algorithm makes a best effort to coalesce in the event of
|
|
// unordered packets, where pkt may land anywhere in items from a
|
|
// sequence number perspective, however once an item is inserted into
|
|
// the table it is never compared across other items later.
|
|
item := items[i]
|
|
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, buffs, offset)
|
|
if can != coalesceUnavailable {
|
|
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, buffs, offset, isV6)
|
|
switch result {
|
|
case coalesceSuccess:
|
|
table.updateAt(item, i)
|
|
return true
|
|
case coalesceItemInvalidCSum:
|
|
// delete the item with an invalid csum
|
|
table.deleteAt(item.key, i)
|
|
case coalescePktInvalidCSum:
|
|
// no point in inserting an item that we can't coalesce
|
|
return false
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
// failed to coalesce with any other packets; store the item in the flow
|
|
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
|
|
return false
|
|
}
|
|
|
|
func isTCP4(b []byte) bool {
|
|
if len(b) < 40 {
|
|
return false
|
|
}
|
|
if b[0]>>4 != 4 {
|
|
return false
|
|
}
|
|
if b[9] != unix.IPPROTO_TCP {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
func isTCP6NoEH(b []byte) bool {
|
|
if len(b) < 60 {
|
|
return false
|
|
}
|
|
if b[0]>>4 != 6 {
|
|
return false
|
|
}
|
|
if b[6] != unix.IPPROTO_TCP {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// handleGRO evaluates buffs for GRO, and writes the indices of the resulting
|
|
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
|
|
// empty (but non-nil), and are passed in to save allocs as the caller may reset
|
|
// and recycle them across vectors of packets.
|
|
func handleGRO(buffs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
|
|
for i := range buffs {
|
|
if offset < virtioNetHdrLen || offset > len(buffs[i])-1 {
|
|
return errors.New("invalid offset")
|
|
}
|
|
var coalesced bool
|
|
switch {
|
|
case isTCP4(buffs[i][offset:]):
|
|
coalesced = tcpGRO(buffs, offset, i, tcp4Table, false)
|
|
case isTCP6NoEH(buffs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
|
|
coalesced = tcpGRO(buffs, offset, i, tcp6Table, true)
|
|
}
|
|
if !coalesced {
|
|
hdr := virtioNetHdr{}
|
|
err := hdr.encode(buffs[i][offset-virtioNetHdrLen:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
*toWrite = append(*toWrite, i)
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// tcpTSO splits packets from in into outBuffs, writing the size of each
|
|
// element into sizes. It returns the number of buffers populated, and/or an
|
|
// error.
|
|
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
|
|
iphLen := int(hdr.csumStart)
|
|
srcAddrOffset := ipv6SrcAddrOffset
|
|
addrLen := 16
|
|
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
|
|
in[10], in[11] = 0, 0 // clear ipv4 header checksum
|
|
srcAddrOffset = ipv4SrcAddrOffset
|
|
addrLen = 4
|
|
}
|
|
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
|
|
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
|
|
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
|
|
nextSegmentDataAt := int(hdr.hdrLen)
|
|
i := 0
|
|
for ; nextSegmentDataAt < len(in); i++ {
|
|
if i == len(outBuffs) {
|
|
return i - 1, ErrTooManySegments
|
|
}
|
|
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
|
|
if nextSegmentEnd > len(in) {
|
|
nextSegmentEnd = len(in)
|
|
}
|
|
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
|
|
totalLen := int(hdr.hdrLen) + segmentDataLen
|
|
sizes[i] = totalLen
|
|
out := outBuffs[i][outOffset:]
|
|
|
|
copy(out, in[:iphLen])
|
|
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
|
|
// For IPv4 we are responsible for incrementing the ID field,
|
|
// updating the total len field, and recalculating the header
|
|
// checksum.
|
|
if i > 0 {
|
|
id := binary.BigEndian.Uint16(out[4:])
|
|
id += uint16(i)
|
|
binary.BigEndian.PutUint16(out[4:], id)
|
|
}
|
|
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
|
|
ipv4CSum := ^checksum(out[:iphLen], 0)
|
|
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
|
|
} else {
|
|
// For IPv6 we are responsible for updating the payload length field.
|
|
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
|
|
}
|
|
|
|
// TCP header
|
|
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
|
|
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
|
|
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
|
|
if nextSegmentEnd != len(in) {
|
|
// FIN and PSH should only be set on last segment
|
|
clearFlags := tcpFlagFIN | tcpFlagPSH
|
|
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
|
|
}
|
|
|
|
// payload
|
|
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
|
|
|
|
// TCP checksum
|
|
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
|
|
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
|
|
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
|
|
tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
|
|
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
|
|
|
|
nextSegmentDataAt += int(hdr.gsoSize)
|
|
}
|
|
return i, nil
|
|
}
|
|
|
|
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
|
|
cSumAt := cSumStart + cSumOffset
|
|
// The initial value at the checksum offset should be summed with the
|
|
// checksum we compute. This is typically the pseudo-header checksum.
|
|
initial := binary.BigEndian.Uint16(in[cSumAt:])
|
|
in[cSumAt], in[cSumAt+1] = 0, 0
|
|
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
|
|
return nil
|
|
}
|