e1fa1cc556
The new test introduced in this commit used to deadlock about 1% of the time. I believe that the deadlock occurs as follows: * The test completes, calling device.Close. * device.Close closes device.signals.stop. * RoutineEncryption stops. * The deferred function in RoutineEncryption drains device.queue.encryption. * RoutineEncryption exits. * A peer's RoutineNonce processes an element queued in peer.queue.nonce. * RoutineNonce puts that element into the outbound and encryption queues. * RoutineSequentialSender reads that elements from the outbound queue. * It waits for that element to get Unlocked by RoutineEncryption. * RoutineEncryption has already exited, so RoutineSequentialSender blocks forever. * device.RemoveAllPeers calls peer.Stop on all peers. * peer.Stop waits for peer.routines.stopping, which blocks forever. Rather than attempt to add even more ordering to the already complex centralized shutdown orchestration, this commit moves towards a data-flow-oriented shutdown. The device.queue.encryption gets closed when there will be no more writes to it. All device.queue.encryption readers always read until the channel is closed and then exit. We thus guarantee that any element that enters the encryption queue also exits it. This removes the need for central control of the lifetime of RoutineEncryption, removes the need to drain the encryption queue on shutdown, and simplifies RoutineEncryption. This commit also fixes a data race. When RoutineSequentialSender drains its queue on shutdown, it needs to lock the elem before operating on it, just as the main body does. The new test in this commit passed 50k iterations with the race detector enabled and 150k iterations with the race detector disabled, with no failures. Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
609 lines
14 KiB
Go
609 lines
14 KiB
Go
/* SPDX-License-Identifier: MIT
|
|
*
|
|
* Copyright (C) 2017-2020 WireGuard LLC. All Rights Reserved.
|
|
*/
|
|
|
|
package device
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"net"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"golang.org/x/crypto/chacha20poly1305"
|
|
"golang.org/x/net/ipv4"
|
|
"golang.org/x/net/ipv6"
|
|
)
|
|
|
|
/* Outbound flow
|
|
*
|
|
* 1. TUN queue
|
|
* 2. Routing (sequential)
|
|
* 3. Nonce assignment (sequential)
|
|
* 4. Encryption (parallel)
|
|
* 5. Transmission (sequential)
|
|
*
|
|
* The functions in this file occur (roughly) in the order in
|
|
* which the packets are processed.
|
|
*
|
|
* Locking, Producers and Consumers
|
|
*
|
|
* The order of packets (per peer) must be maintained,
|
|
* but encryption of packets happen out-of-order:
|
|
*
|
|
* The sequential consumers will attempt to take the lock,
|
|
* workers release lock when they have completed work (encryption) on the packet.
|
|
*
|
|
* If the element is inserted into the "encryption queue",
|
|
* the content is preceded by enough "junk" to contain the transport header
|
|
* (to allow the construction of transport messages in-place)
|
|
*/
|
|
|
|
type QueueOutboundElement struct {
|
|
dropped int32
|
|
sync.Mutex
|
|
buffer *[MaxMessageSize]byte // slice holding the packet data
|
|
packet []byte // slice of "buffer" (always!)
|
|
nonce uint64 // nonce for encryption
|
|
keypair *Keypair // keypair for encryption
|
|
peer *Peer // related peer
|
|
}
|
|
|
|
func (device *Device) NewOutboundElement() *QueueOutboundElement {
|
|
elem := device.GetOutboundElement()
|
|
elem.dropped = AtomicFalse
|
|
elem.buffer = device.GetMessageBuffer()
|
|
elem.Mutex = sync.Mutex{}
|
|
elem.nonce = 0
|
|
// keypair and peer were cleared (if necessary) by clearPointers.
|
|
return elem
|
|
}
|
|
|
|
// clearPointers clears elem fields that contain pointers.
|
|
// This makes the garbage collector's life easier and
|
|
// avoids accidentally keeping other objects around unnecessarily.
|
|
// It also reduces the possible collateral damage from use-after-free bugs.
|
|
func (elem *QueueOutboundElement) clearPointers() {
|
|
elem.buffer = nil
|
|
elem.packet = nil
|
|
elem.keypair = nil
|
|
elem.peer = nil
|
|
}
|
|
|
|
func (elem *QueueOutboundElement) Drop() {
|
|
atomic.StoreInt32(&elem.dropped, AtomicTrue)
|
|
}
|
|
|
|
func (elem *QueueOutboundElement) IsDropped() bool {
|
|
return atomic.LoadInt32(&elem.dropped) == AtomicTrue
|
|
}
|
|
|
|
func addToNonceQueue(queue chan *QueueOutboundElement, element *QueueOutboundElement, device *Device) {
|
|
for {
|
|
select {
|
|
case queue <- element:
|
|
return
|
|
default:
|
|
select {
|
|
case old := <-queue:
|
|
device.PutMessageBuffer(old.buffer)
|
|
device.PutOutboundElement(old)
|
|
default:
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func addToOutboundAndEncryptionQueues(outboundQueue chan *QueueOutboundElement, encryptionQueue chan *QueueOutboundElement, element *QueueOutboundElement) {
|
|
select {
|
|
case outboundQueue <- element:
|
|
select {
|
|
case encryptionQueue <- element:
|
|
return
|
|
default:
|
|
element.Drop()
|
|
element.peer.device.PutMessageBuffer(element.buffer)
|
|
element.Unlock()
|
|
}
|
|
default:
|
|
element.peer.device.PutMessageBuffer(element.buffer)
|
|
element.peer.device.PutOutboundElement(element)
|
|
}
|
|
}
|
|
|
|
/* Queues a keepalive if no packets are queued for peer
|
|
*/
|
|
func (peer *Peer) SendKeepalive() bool {
|
|
peer.queue.RLock()
|
|
defer peer.queue.RUnlock()
|
|
if len(peer.queue.nonce) != 0 || peer.queue.packetInNonceQueueIsAwaitingKey.Get() || !peer.isRunning.Get() {
|
|
return false
|
|
}
|
|
elem := peer.device.NewOutboundElement()
|
|
elem.packet = nil
|
|
select {
|
|
case peer.queue.nonce <- elem:
|
|
peer.device.log.Debug.Println(peer, "- Sending keepalive packet")
|
|
return true
|
|
default:
|
|
peer.device.PutMessageBuffer(elem.buffer)
|
|
peer.device.PutOutboundElement(elem)
|
|
return false
|
|
}
|
|
}
|
|
|
|
func (peer *Peer) SendHandshakeInitiation(isRetry bool) error {
|
|
if !isRetry {
|
|
atomic.StoreUint32(&peer.timers.handshakeAttempts, 0)
|
|
}
|
|
|
|
peer.handshake.mutex.RLock()
|
|
if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout {
|
|
peer.handshake.mutex.RUnlock()
|
|
return nil
|
|
}
|
|
peer.handshake.mutex.RUnlock()
|
|
|
|
peer.handshake.mutex.Lock()
|
|
if time.Since(peer.handshake.lastSentHandshake) < RekeyTimeout {
|
|
peer.handshake.mutex.Unlock()
|
|
return nil
|
|
}
|
|
peer.handshake.lastSentHandshake = time.Now()
|
|
peer.handshake.mutex.Unlock()
|
|
|
|
peer.device.log.Debug.Println(peer, "- Sending handshake initiation")
|
|
|
|
msg, err := peer.device.CreateMessageInitiation(peer)
|
|
if err != nil {
|
|
peer.device.log.Error.Println(peer, "- Failed to create initiation message:", err)
|
|
return err
|
|
}
|
|
|
|
var buff [MessageInitiationSize]byte
|
|
writer := bytes.NewBuffer(buff[:0])
|
|
binary.Write(writer, binary.LittleEndian, msg)
|
|
packet := writer.Bytes()
|
|
peer.cookieGenerator.AddMacs(packet)
|
|
|
|
peer.timersAnyAuthenticatedPacketTraversal()
|
|
peer.timersAnyAuthenticatedPacketSent()
|
|
|
|
err = peer.SendBuffer(packet)
|
|
if err != nil {
|
|
peer.device.log.Error.Println(peer, "- Failed to send handshake initiation", err)
|
|
}
|
|
peer.timersHandshakeInitiated()
|
|
|
|
return err
|
|
}
|
|
|
|
func (peer *Peer) SendHandshakeResponse() error {
|
|
peer.handshake.mutex.Lock()
|
|
peer.handshake.lastSentHandshake = time.Now()
|
|
peer.handshake.mutex.Unlock()
|
|
|
|
peer.device.log.Debug.Println(peer, "- Sending handshake response")
|
|
|
|
response, err := peer.device.CreateMessageResponse(peer)
|
|
if err != nil {
|
|
peer.device.log.Error.Println(peer, "- Failed to create response message:", err)
|
|
return err
|
|
}
|
|
|
|
var buff [MessageResponseSize]byte
|
|
writer := bytes.NewBuffer(buff[:0])
|
|
binary.Write(writer, binary.LittleEndian, response)
|
|
packet := writer.Bytes()
|
|
peer.cookieGenerator.AddMacs(packet)
|
|
|
|
err = peer.BeginSymmetricSession()
|
|
if err != nil {
|
|
peer.device.log.Error.Println(peer, "- Failed to derive keypair:", err)
|
|
return err
|
|
}
|
|
|
|
peer.timersSessionDerived()
|
|
peer.timersAnyAuthenticatedPacketTraversal()
|
|
peer.timersAnyAuthenticatedPacketSent()
|
|
|
|
err = peer.SendBuffer(packet)
|
|
if err != nil {
|
|
peer.device.log.Error.Println(peer, "- Failed to send handshake response", err)
|
|
}
|
|
return err
|
|
}
|
|
|
|
func (device *Device) SendHandshakeCookie(initiatingElem *QueueHandshakeElement) error {
|
|
|
|
device.log.Debug.Println("Sending cookie response for denied handshake message for", initiatingElem.endpoint.DstToString())
|
|
|
|
sender := binary.LittleEndian.Uint32(initiatingElem.packet[4:8])
|
|
reply, err := device.cookieChecker.CreateReply(initiatingElem.packet, sender, initiatingElem.endpoint.DstToBytes())
|
|
if err != nil {
|
|
device.log.Error.Println("Failed to create cookie reply:", err)
|
|
return err
|
|
}
|
|
|
|
var buff [MessageCookieReplySize]byte
|
|
writer := bytes.NewBuffer(buff[:0])
|
|
binary.Write(writer, binary.LittleEndian, reply)
|
|
device.net.bind.Send(writer.Bytes(), initiatingElem.endpoint)
|
|
return nil
|
|
}
|
|
|
|
func (peer *Peer) keepKeyFreshSending() {
|
|
keypair := peer.keypairs.Current()
|
|
if keypair == nil {
|
|
return
|
|
}
|
|
nonce := atomic.LoadUint64(&keypair.sendNonce)
|
|
if nonce > RekeyAfterMessages || (keypair.isInitiator && time.Since(keypair.created) > RekeyAfterTime) {
|
|
peer.SendHandshakeInitiation(false)
|
|
}
|
|
}
|
|
|
|
/* Reads packets from the TUN and inserts
|
|
* into nonce queue for peer
|
|
*
|
|
* Obs. Single instance per TUN device
|
|
*/
|
|
func (device *Device) RoutineReadFromTUN() {
|
|
|
|
logDebug := device.log.Debug
|
|
logError := device.log.Error
|
|
|
|
defer func() {
|
|
logDebug.Println("Routine: TUN reader - stopped")
|
|
device.state.stopping.Done()
|
|
}()
|
|
|
|
logDebug.Println("Routine: TUN reader - started")
|
|
|
|
var elem *QueueOutboundElement
|
|
|
|
for {
|
|
if elem != nil {
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
}
|
|
elem = device.NewOutboundElement()
|
|
|
|
// read packet
|
|
|
|
offset := MessageTransportHeaderSize
|
|
size, err := device.tun.device.Read(elem.buffer[:], offset)
|
|
|
|
if err != nil {
|
|
if !device.isClosed.Get() {
|
|
logError.Println("Failed to read packet from TUN device:", err)
|
|
device.Close()
|
|
}
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
return
|
|
}
|
|
|
|
if size == 0 || size > MaxContentSize {
|
|
continue
|
|
}
|
|
|
|
elem.packet = elem.buffer[offset : offset+size]
|
|
|
|
// lookup peer
|
|
|
|
var peer *Peer
|
|
switch elem.packet[0] >> 4 {
|
|
case ipv4.Version:
|
|
if len(elem.packet) < ipv4.HeaderLen {
|
|
continue
|
|
}
|
|
dst := elem.packet[IPv4offsetDst : IPv4offsetDst+net.IPv4len]
|
|
peer = device.allowedips.LookupIPv4(dst)
|
|
|
|
case ipv6.Version:
|
|
if len(elem.packet) < ipv6.HeaderLen {
|
|
continue
|
|
}
|
|
dst := elem.packet[IPv6offsetDst : IPv6offsetDst+net.IPv6len]
|
|
peer = device.allowedips.LookupIPv6(dst)
|
|
|
|
default:
|
|
logDebug.Println("Received packet with unknown IP version")
|
|
}
|
|
|
|
if peer == nil {
|
|
continue
|
|
}
|
|
|
|
// insert into nonce/pre-handshake queue
|
|
|
|
peer.queue.RLock()
|
|
if peer.isRunning.Get() {
|
|
if peer.queue.packetInNonceQueueIsAwaitingKey.Get() {
|
|
peer.SendHandshakeInitiation(false)
|
|
}
|
|
addToNonceQueue(peer.queue.nonce, elem, device)
|
|
elem = nil
|
|
}
|
|
peer.queue.RUnlock()
|
|
}
|
|
}
|
|
|
|
func (peer *Peer) FlushNonceQueue() {
|
|
select {
|
|
case peer.signals.flushNonceQueue <- struct{}{}:
|
|
default:
|
|
}
|
|
}
|
|
|
|
/* Queues packets when there is no handshake.
|
|
* Then assigns nonces to packets sequentially
|
|
* and creates "work" structs for workers
|
|
*
|
|
* Obs. A single instance per peer
|
|
*/
|
|
func (peer *Peer) RoutineNonce() {
|
|
var keypair *Keypair
|
|
|
|
device := peer.device
|
|
logDebug := device.log.Debug
|
|
|
|
// We write to the encryption queue; keep it alive until we are done.
|
|
device.queue.encryption.wg.Add(1)
|
|
|
|
flush := func() {
|
|
for {
|
|
select {
|
|
case elem := <-peer.queue.nonce:
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
default:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
defer func() {
|
|
flush()
|
|
logDebug.Println(peer, "- Routine: nonce worker - stopped")
|
|
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
|
|
device.queue.encryption.wg.Done() // no more writes from us
|
|
peer.routines.stopping.Done()
|
|
}()
|
|
|
|
logDebug.Println(peer, "- Routine: nonce worker - started")
|
|
|
|
NextPacket:
|
|
for {
|
|
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
|
|
|
|
select {
|
|
case <-peer.routines.stop:
|
|
return
|
|
|
|
case <-peer.signals.flushNonceQueue:
|
|
flush()
|
|
continue NextPacket
|
|
|
|
case elem, ok := <-peer.queue.nonce:
|
|
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// make sure to always pick the newest key
|
|
|
|
for {
|
|
|
|
// check validity of newest key pair
|
|
|
|
keypair = peer.keypairs.Current()
|
|
if keypair != nil && keypair.sendNonce < RejectAfterMessages {
|
|
if time.Since(keypair.created) < RejectAfterTime {
|
|
break
|
|
}
|
|
}
|
|
peer.queue.packetInNonceQueueIsAwaitingKey.Set(true)
|
|
|
|
// no suitable key pair, request for new handshake
|
|
|
|
select {
|
|
case <-peer.signals.newKeypairArrived:
|
|
default:
|
|
}
|
|
|
|
peer.SendHandshakeInitiation(false)
|
|
|
|
// wait for key to be established
|
|
|
|
logDebug.Println(peer, "- Awaiting keypair")
|
|
|
|
select {
|
|
case <-peer.signals.newKeypairArrived:
|
|
logDebug.Println(peer, "- Obtained awaited keypair")
|
|
|
|
case <-peer.signals.flushNonceQueue:
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
flush()
|
|
continue NextPacket
|
|
|
|
case <-peer.routines.stop:
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
return
|
|
}
|
|
}
|
|
peer.queue.packetInNonceQueueIsAwaitingKey.Set(false)
|
|
|
|
// populate work element
|
|
|
|
elem.peer = peer
|
|
elem.nonce = atomic.AddUint64(&keypair.sendNonce, 1) - 1
|
|
|
|
// double check in case of race condition added by future code
|
|
|
|
if elem.nonce >= RejectAfterMessages {
|
|
atomic.StoreUint64(&keypair.sendNonce, RejectAfterMessages)
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
continue NextPacket
|
|
}
|
|
|
|
elem.keypair = keypair
|
|
elem.dropped = AtomicFalse
|
|
elem.Lock()
|
|
|
|
// add to parallel and sequential queue
|
|
addToOutboundAndEncryptionQueues(peer.queue.outbound, device.queue.encryption.c, elem)
|
|
}
|
|
}
|
|
}
|
|
|
|
func calculatePaddingSize(packetSize, mtu int) int {
|
|
lastUnit := packetSize
|
|
if mtu == 0 {
|
|
return ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1)) - lastUnit
|
|
}
|
|
if lastUnit > mtu {
|
|
lastUnit %= mtu
|
|
}
|
|
paddedSize := ((lastUnit + PaddingMultiple - 1) & ^(PaddingMultiple - 1))
|
|
if paddedSize > mtu {
|
|
paddedSize = mtu
|
|
}
|
|
return paddedSize - lastUnit
|
|
}
|
|
|
|
/* Encrypts the elements in the queue
|
|
* and marks them for sequential consumption (by releasing the mutex)
|
|
*
|
|
* Obs. One instance per core
|
|
*/
|
|
func (device *Device) RoutineEncryption() {
|
|
|
|
var nonce [chacha20poly1305.NonceSize]byte
|
|
|
|
logDebug := device.log.Debug
|
|
|
|
defer logDebug.Println("Routine: encryption worker - stopped")
|
|
logDebug.Println("Routine: encryption worker - started")
|
|
|
|
for elem := range device.queue.encryption.c {
|
|
|
|
// check if dropped
|
|
|
|
if elem.IsDropped() {
|
|
continue
|
|
}
|
|
|
|
// populate header fields
|
|
|
|
header := elem.buffer[:MessageTransportHeaderSize]
|
|
|
|
fieldType := header[0:4]
|
|
fieldReceiver := header[4:8]
|
|
fieldNonce := header[8:16]
|
|
|
|
binary.LittleEndian.PutUint32(fieldType, MessageTransportType)
|
|
binary.LittleEndian.PutUint32(fieldReceiver, elem.keypair.remoteIndex)
|
|
binary.LittleEndian.PutUint64(fieldNonce, elem.nonce)
|
|
|
|
// pad content to multiple of 16
|
|
|
|
paddingSize := calculatePaddingSize(len(elem.packet), int(atomic.LoadInt32(&device.tun.mtu)))
|
|
for i := 0; i < paddingSize; i++ {
|
|
elem.packet = append(elem.packet, 0)
|
|
}
|
|
|
|
// encrypt content and release to consumer
|
|
|
|
binary.LittleEndian.PutUint64(nonce[4:], elem.nonce)
|
|
elem.packet = elem.keypair.send.Seal(
|
|
header,
|
|
nonce[:],
|
|
elem.packet,
|
|
nil,
|
|
)
|
|
elem.Unlock()
|
|
}
|
|
}
|
|
|
|
/* Sequentially reads packets from queue and sends to endpoint
|
|
*
|
|
* Obs. Single instance per peer.
|
|
* The routine terminates then the outbound queue is closed.
|
|
*/
|
|
func (peer *Peer) RoutineSequentialSender() {
|
|
|
|
device := peer.device
|
|
|
|
logDebug := device.log.Debug
|
|
logError := device.log.Error
|
|
|
|
defer func() {
|
|
for {
|
|
select {
|
|
case elem, ok := <-peer.queue.outbound:
|
|
if ok {
|
|
elem.Lock()
|
|
if !elem.IsDropped() {
|
|
device.PutMessageBuffer(elem.buffer)
|
|
elem.Drop()
|
|
}
|
|
device.PutOutboundElement(elem)
|
|
}
|
|
default:
|
|
goto out
|
|
}
|
|
}
|
|
out:
|
|
logDebug.Println(peer, "- Routine: sequential sender - stopped")
|
|
peer.routines.stopping.Done()
|
|
}()
|
|
|
|
logDebug.Println(peer, "- Routine: sequential sender - started")
|
|
|
|
for {
|
|
select {
|
|
|
|
case <-peer.routines.stop:
|
|
return
|
|
|
|
case elem, ok := <-peer.queue.outbound:
|
|
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
elem.Lock()
|
|
if elem.IsDropped() {
|
|
device.PutOutboundElement(elem)
|
|
continue
|
|
}
|
|
|
|
peer.timersAnyAuthenticatedPacketTraversal()
|
|
peer.timersAnyAuthenticatedPacketSent()
|
|
|
|
// send message and return buffer to pool
|
|
|
|
err := peer.SendBuffer(elem.packet)
|
|
if len(elem.packet) != MessageKeepaliveSize {
|
|
peer.timersDataSent()
|
|
}
|
|
device.PutMessageBuffer(elem.buffer)
|
|
device.PutOutboundElement(elem)
|
|
if err != nil {
|
|
logError.Println(peer, "- Failed to send data packet", err)
|
|
continue
|
|
}
|
|
|
|
peer.keepKeyFreshSending()
|
|
}
|
|
}
|
|
}
|