wireguard-go/tun/tcp_offload_linux.go
Jordan Whited aad7fca9c5 tun: disqualify tcp4 packets w/IP options from coalescing
IP options were not being compared prior to coalescing. They are not
commonly used. Disqualification due to nonzero options is in line with
the kernel.

Reviewed-by: Denton Gentry <dgentry@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2023-03-25 23:13:26 +01:00

613 lines
20 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package tun
import (
"bytes"
"encoding/binary"
"errors"
"io"
"unsafe"
"golang.org/x/sys/unix"
"golang.zx2c4.com/wireguard/conn"
)
const tcpFlagsOffset = 13
const (
tcpFlagFIN uint8 = 0x01
tcpFlagPSH uint8 = 0x08
tcpFlagACK uint8 = 0x10
)
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
func (v *virtioNetHdr) decode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
return nil
}
func (v *virtioNetHdr) encode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
return nil
}
const (
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)
// flowKey represents the key for a flow.
type flowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
}
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
type tcpGROTable struct {
itemsByFlow map[flowKey][]tcpGROItem
itemsPool [][]tcpGROItem
}
func newTCPGROTable() *tcpGROTable {
t := &tcpGROTable{
itemsByFlow: make(map[flowKey][]tcpGROItem, conn.IdealBatchSize),
itemsPool: make([][]tcpGROItem, conn.IdealBatchSize),
}
for i := range t.itemsPool {
t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
}
return t
}
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
key := flowKey{}
addrSize := dstAddr - srcAddr
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
items, ok := t.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
item := tcpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
iphLen: uint8(tcphOffset),
tcphLen: uint8(tcphLen),
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
}
items, ok := t.itemsByFlow[key]
if !ok {
items = t.newItems()
}
items = append(items, item)
t.itemsByFlow[key] = items
}
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
items, _ := t.itemsByFlow[item.key]
items[i] = item
}
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
items, _ := t.itemsByFlow[key]
items = append(items[:i], items[i+1:]...)
t.itemsByFlow[key] = items
}
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
key flowKey
sentSeq uint32 // the sequence number
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
tcphLen uint8 // tcp header len
pshSet bool // psh flag is set
}
func (t *tcpGROTable) newItems() []tcpGROItem {
var items []tcpGROItem
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
return items
}
func (t *tcpGROTable) reset() {
for k, items := range t.itemsByFlow {
items = items[:0]
t.itemsPool = append(t.itemsPool, items)
delete(t.itemsByFlow, k)
}
}
// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int
const (
coalescePrepend canCoalesce = -1
coalesceUnavailable canCoalesce = 0
coalesceAppend canCoalesce = 1
)
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if tcphLen != item.tcphLen {
// cannot coalesce with unequal tcp options len
return coalesceUnavailable
}
if tcphLen > 20 {
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
// cannot coalesce with unequal tcp options
return coalesceUnavailable
}
}
if pkt[1] != pktTarget[1] {
// cannot coalesce with unequal ToS values
return coalesceUnavailable
}
if pkt[6]>>5 != pktTarget[6]>>5 {
// cannot coalesce with unequal DF or reserved bits. MF is checked
// further up the stack.
return coalesceUnavailable
}
// seq adjacency
lhsLen := item.gsoSize
lhsLen += item.numMerged * item.gsoSize
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
if item.pshSet {
// We cannot append to a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
if pshSet {
// We cannot prepend with a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if gsoSize < item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
if gsoSize > item.gsoSize && item.numMerged > 0 {
// There's at least one previous merge, and we're larger than all
// previous. This would put multiple smaller packets on the end.
return coalesceUnavailable
}
return coalescePrepend
}
return coalesceUnavailable
}
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
srcAddrAt := ipv4SrcAddrOffset
addrSize := 4
if isV6 {
srcAddrAt = ipv6SrcAddrOffset
addrSize = 16
}
tcpTotalLen := uint16(len(pkt) - int(iphLen))
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
}
// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int
const (
coalesceInsufficientCap coalesceResult = 0
coalescePSHEnding coalesceResult = 1
coalesceItemInvalidCSum coalesceResult = 2
coalescePktInvalidCSum coalesceResult = 3
coalesceSuccess coalesceResult = 4
)
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, returning the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
var pktHead []byte // the packet that will end up at the front
headersLen := item.iphLen + item.tcphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
// Copy data
if mode == coalescePrepend {
pktHead = pkt
if cap(pkt)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if pshSet {
return coalescePSHEnding
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
item.sentSeq = seq
extendBy := coalescedLen - len(pktHead)
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
// Flip the slice headers in bufs as part of prepend. The index of item
// is already being tracked for writing.
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
} else {
pktHead = bufs[item.bufsIndex][bufsOffset:]
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
if pshSet {
// We are appending a segment with PSH set.
item.pshSet = pshSet
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
}
if gsoSize > item.gsoSize {
item.gsoSize = gsoSize
}
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(headersLen),
gsoSize: uint16(item.gsoSize),
csumStart: uint16(item.iphLen),
csumOffset: 16,
}
// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
// (IPv4) header checksum.
if isV6 {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
} else {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
pktHead[10], pktHead[11] = 0, 0 // clear checksum field
binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum
binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field
}
hdr.encode(bufs[item.bufsIndex][bufsOffset-virtioNetHdrLen:])
// Calculate the pseudo header checksum and place it at the TCP checksum
// offset. Downstream checksum offloading will combine this with computation
// of the tcp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := bufsOffset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
item.numMerged++
return coalesceSuccess
}
const (
ipv4FlagMoreFragments = 0x80
)
const (
ipv4SrcAddrOffset = 12
ipv6SrcAddrOffset = 8
maxUint16 = 1<<16 - 1
)
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It will return false when pktI is not
// coalesced, otherwise true. This indicates to the caller if bufs[pktI]
// should be written to the Device.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return false
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return false
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return false
}
}
if len(pkt) < iphLen {
return false
}
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
if tcphLen < 20 || tcphLen > 60 {
return false
}
if len(pkt) < iphLen+tcphLen {
return false
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || (pkt[6]<<3 != 0 || pkt[7] != 0) {
// no GRO support for fragmented segments for now
return false
}
}
tcpFlags := pkt[iphLen+tcpFlagsOffset]
var pshSet bool
// not a candidate if any non-ACK flags (except PSH+ACK) are set
if tcpFlags != tcpFlagACK {
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
return false
}
pshSet = true
}
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return false
}
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
if !existing {
return false
}
for i := len(items) - 1; i >= 0; i-- {
// In the best case of packets arriving in order iterating in reverse is
// more efficient if there are multiple items for a given flow. This
// also enables a natural table.deleteAt() in the
// coalesceItemInvalidCSum case without the need for index tracking.
// This algorithm makes a best effort to coalesce in the event of
// unordered packets, where pkt may land anywhere in items from a
// sequence number perspective, however once an item is inserted into
// the table it is never compared across other items later.
item := items[i]
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
if can != coalesceUnavailable {
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, i)
return true
case coalesceItemInvalidCSum:
// delete the item with an invalid csum
table.deleteAt(item.key, i)
case coalescePktInvalidCSum:
// no point in inserting an item that we can't coalesce
return false
default:
}
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
return false
}
func isTCP4NoIPOptions(b []byte) bool {
if len(b) < 40 {
return false
}
if b[0]>>4 != 4 {
return false
}
if b[0]&0x0F != 5 {
return false
}
if b[9] != unix.IPPROTO_TCP {
return false
}
return true
}
func isTCP6NoEH(b []byte) bool {
if len(b) < 60 {
return false
}
if b[0]>>4 != 6 {
return false
}
if b[6] != unix.IPPROTO_TCP {
return false
}
return true
}
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets.
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
for i := range bufs {
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
return errors.New("invalid offset")
}
var coalesced bool
switch {
case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp4Table, false)
case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp6Table, true)
}
if !coalesced {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
if err != nil {
return err
}
*toWrite = append(*toWrite, i)
}
}
return nil
}
// tcpTSO splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
iphLen := int(hdr.csumStart)
srcAddrOffset := ipv6SrcAddrOffset
addrLen := 16
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
in[10], in[11] = 0, 0 // clear ipv4 header checksum
srcAddrOffset = ipv4SrcAddrOffset
addrLen = 4
}
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
nextSegmentDataAt := int(hdr.hdrLen)
i := 0
for ; nextSegmentDataAt < len(in); i++ {
if i == len(outBuffs) {
return i - 1, ErrTooManySegments
}
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
if nextSegmentEnd > len(in) {
nextSegmentEnd = len(in)
}
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
totalLen := int(hdr.hdrLen) + segmentDataLen
sizes[i] = totalLen
out := outBuffs[i][outOffset:]
copy(out, in[:iphLen])
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
// For IPv4 we are responsible for incrementing the ID field,
// updating the total len field, and recalculating the header
// checksum.
if i > 0 {
id := binary.BigEndian.Uint16(out[4:])
id += uint16(i)
binary.BigEndian.PutUint16(out[4:], id)
}
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
ipv4CSum := ^checksum(out[:iphLen], 0)
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
} else {
// For IPv6 we are responsible for updating the payload length field.
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
}
// TCP header
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
if nextSegmentEnd != len(in) {
// FIN and PSH should only be set on last segment
clearFlags := tcpFlagFIN | tcpFlagPSH
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
}
// payload
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
// TCP checksum
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
nextSegmentDataAt += int(hdr.gsoSize)
}
return i, nil
}
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
cSumAt := cSumStart + cSumOffset
// The initial value at the checksum offset should be summed with the
// checksum we compute. This is typically the pseudo-header checksum.
initial := binary.BigEndian.Uint16(in[cSumAt:])
in[cSumAt], in[cSumAt+1] = 0, 0
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
return nil
}