wireguard-go/tun/tcp_offload_linux.go
Jordan Whited 052af4a807 tun: use correct IP header comparisons in tcpGRO() and tcpPacketsCanCoalesce()
tcpGRO() was using an incorrect IPv4 more fragments bit mask.

tcpPacketsCanCoalesce() was not distinguishing tcp6 from tcp4, and TTL
values were not compared. TTL values should be equal at the IP layer,
otherwise the packets should not coalesce. This tracks with the kernel.

Reviewed-by: Denton Gentry <dgentry@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2023-03-25 23:13:38 +01:00

628 lines
20 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*/
package tun
import (
"bytes"
"encoding/binary"
"errors"
"io"
"unsafe"
"golang.org/x/sys/unix"
"golang.zx2c4.com/wireguard/conn"
)
const tcpFlagsOffset = 13
const (
tcpFlagFIN uint8 = 0x01
tcpFlagPSH uint8 = 0x08
tcpFlagACK uint8 = 0x10
)
// virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The
// kernel symbol is virtio_net_hdr.
type virtioNetHdr struct {
flags uint8
gsoType uint8
hdrLen uint16
gsoSize uint16
csumStart uint16
csumOffset uint16
}
func (v *virtioNetHdr) decode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen])
return nil
}
func (v *virtioNetHdr) encode(b []byte) error {
if len(b) < virtioNetHdrLen {
return io.ErrShortBuffer
}
copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen))
return nil
}
const (
// virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the
// shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr).
virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{}))
)
// flowKey represents the key for a flow.
type flowKey struct {
srcAddr, dstAddr [16]byte
srcPort, dstPort uint16
rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows.
}
// tcpGROTable holds flow and coalescing information for the purposes of GRO.
type tcpGROTable struct {
itemsByFlow map[flowKey][]tcpGROItem
itemsPool [][]tcpGROItem
}
func newTCPGROTable() *tcpGROTable {
t := &tcpGROTable{
itemsByFlow: make(map[flowKey][]tcpGROItem, conn.IdealBatchSize),
itemsPool: make([][]tcpGROItem, conn.IdealBatchSize),
}
for i := range t.itemsPool {
t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize)
}
return t
}
func newFlowKey(pkt []byte, srcAddr, dstAddr, tcphOffset int) flowKey {
key := flowKey{}
addrSize := dstAddr - srcAddr
copy(key.srcAddr[:], pkt[srcAddr:dstAddr])
copy(key.dstAddr[:], pkt[dstAddr:dstAddr+addrSize])
key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:])
key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:])
key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:])
return key
}
// lookupOrInsert looks up a flow for the provided packet and metadata,
// returning the packets found for the flow, or inserting a new one if none
// is found.
func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
items, ok := t.itemsByFlow[key]
if ok {
return items, ok
}
// TODO: insert() performs another map lookup. This could be rearranged to avoid.
t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex)
return nil, false
}
// insert an item in the table for the provided packet and packet metadata.
func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) {
key := newFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset)
item := tcpGROItem{
key: key,
bufsIndex: uint16(bufsIndex),
gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])),
iphLen: uint8(tcphOffset),
tcphLen: uint8(tcphLen),
sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]),
pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0,
}
items, ok := t.itemsByFlow[key]
if !ok {
items = t.newItems()
}
items = append(items, item)
t.itemsByFlow[key] = items
}
func (t *tcpGROTable) updateAt(item tcpGROItem, i int) {
items, _ := t.itemsByFlow[item.key]
items[i] = item
}
func (t *tcpGROTable) deleteAt(key flowKey, i int) {
items, _ := t.itemsByFlow[key]
items = append(items[:i], items[i+1:]...)
t.itemsByFlow[key] = items
}
// tcpGROItem represents bookkeeping data for a TCP packet during the lifetime
// of a GRO evaluation across a vector of packets.
type tcpGROItem struct {
key flowKey
sentSeq uint32 // the sequence number
bufsIndex uint16 // the index into the original bufs slice
numMerged uint16 // the number of packets merged into this item
gsoSize uint16 // payload size
iphLen uint8 // ip header len
tcphLen uint8 // tcp header len
pshSet bool // psh flag is set
}
func (t *tcpGROTable) newItems() []tcpGROItem {
var items []tcpGROItem
items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1]
return items
}
func (t *tcpGROTable) reset() {
for k, items := range t.itemsByFlow {
items = items[:0]
t.itemsPool = append(t.itemsPool, items)
delete(t.itemsByFlow, k)
}
}
// canCoalesce represents the outcome of checking if two TCP packets are
// candidates for coalescing.
type canCoalesce int
const (
coalescePrepend canCoalesce = -1
coalesceUnavailable canCoalesce = 0
coalesceAppend canCoalesce = 1
)
// tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet
// described by item. This function makes considerations that match the kernel's
// GRO self tests, which can be found in tools/testing/selftests/net/gro.c.
func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce {
pktTarget := bufs[item.bufsIndex][bufsOffset:]
if tcphLen != item.tcphLen {
// cannot coalesce with unequal tcp options len
return coalesceUnavailable
}
if tcphLen > 20 {
if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) {
// cannot coalesce with unequal tcp options
return coalesceUnavailable
}
}
if pkt[0]>>4 == 6 {
if pkt[0] != pktTarget[0] || pkt[1]>>4 != pktTarget[1]>>4 {
// cannot coalesce with unequal Traffic class values
return coalesceUnavailable
}
if pkt[7] != pktTarget[7] {
// cannot coalesce with unequal Hop limit values
return coalesceUnavailable
}
} else {
if pkt[1] != pktTarget[1] {
// cannot coalesce with unequal ToS values
return coalesceUnavailable
}
if pkt[6]>>5 != pktTarget[6]>>5 {
// cannot coalesce with unequal DF or reserved bits. MF is checked
// further up the stack.
return coalesceUnavailable
}
if pkt[8] != pktTarget[8] {
// cannot coalesce with unequal TTL values
return coalesceUnavailable
}
}
// seq adjacency
lhsLen := item.gsoSize
lhsLen += item.numMerged * item.gsoSize
if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective
if item.pshSet {
// We cannot append to a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 {
// A smaller than gsoSize packet has been appended previously.
// Nothing can come after a smaller packet on the end.
return coalesceUnavailable
}
if gsoSize > item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
return coalesceAppend
} else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective
if pshSet {
// We cannot prepend with a segment that has the PSH flag set, PSH
// can only be set on the final segment in a reassembled group.
return coalesceUnavailable
}
if gsoSize < item.gsoSize {
// We cannot have a larger packet following a smaller one.
return coalesceUnavailable
}
if gsoSize > item.gsoSize && item.numMerged > 0 {
// There's at least one previous merge, and we're larger than all
// previous. This would put multiple smaller packets on the end.
return coalesceUnavailable
}
return coalescePrepend
}
return coalesceUnavailable
}
func tcpChecksumValid(pkt []byte, iphLen uint8, isV6 bool) bool {
srcAddrAt := ipv4SrcAddrOffset
addrSize := 4
if isV6 {
srcAddrAt = ipv6SrcAddrOffset
addrSize = 16
}
tcpTotalLen := uint16(len(pkt) - int(iphLen))
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], tcpTotalLen)
return ^checksum(pkt[iphLen:], tcpCSumNoFold) == 0
}
// coalesceResult represents the result of attempting to coalesce two TCP
// packets.
type coalesceResult int
const (
coalesceInsufficientCap coalesceResult = 0
coalescePSHEnding coalesceResult = 1
coalesceItemInvalidCSum coalesceResult = 2
coalescePktInvalidCSum coalesceResult = 3
coalesceSuccess coalesceResult = 4
)
// coalesceTCPPackets attempts to coalesce pkt with the packet described by
// item, returning the outcome. This function may swap bufs elements in the
// event of a prepend as item's bufs index is already being tracked for writing
// to a Device.
func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult {
var pktHead []byte // the packet that will end up at the front
headersLen := item.iphLen + item.tcphLen
coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen)
// Copy data
if mode == coalescePrepend {
pktHead = pkt
if cap(pkt)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if pshSet {
return coalescePSHEnding
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
item.sentSeq = seq
extendBy := coalescedLen - len(pktHead)
bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...)
copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):])
// Flip the slice headers in bufs as part of prepend. The index of item
// is already being tracked for writing.
bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex]
} else {
pktHead = bufs[item.bufsIndex][bufsOffset:]
if cap(pktHead)-bufsOffset < coalescedLen {
// We don't want to allocate a new underlying array if capacity is
// too small.
return coalesceInsufficientCap
}
if item.numMerged == 0 {
if !tcpChecksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, isV6) {
return coalesceItemInvalidCSum
}
}
if !tcpChecksumValid(pkt, item.iphLen, isV6) {
return coalescePktInvalidCSum
}
if pshSet {
// We are appending a segment with PSH set.
item.pshSet = pshSet
pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH
}
extendBy := len(pkt) - int(headersLen)
bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...)
copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:])
}
if gsoSize > item.gsoSize {
item.gsoSize = gsoSize
}
hdr := virtioNetHdr{
flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb
hdrLen: uint16(headersLen),
gsoSize: uint16(item.gsoSize),
csumStart: uint16(item.iphLen),
csumOffset: 16,
}
// Recalculate the total len (IPv4) or payload len (IPv6). Recalculate the
// (IPv4) header checksum.
if isV6 {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6
binary.BigEndian.PutUint16(pktHead[4:], uint16(coalescedLen)-uint16(item.iphLen)) // set new payload len
} else {
hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4
pktHead[10], pktHead[11] = 0, 0 // clear checksum field
binary.BigEndian.PutUint16(pktHead[2:], uint16(coalescedLen)) // set new total length
iphCSum := ^checksum(pktHead[:item.iphLen], 0) // compute checksum
binary.BigEndian.PutUint16(pktHead[10:], iphCSum) // set checksum field
}
hdr.encode(bufs[item.bufsIndex][bufsOffset-virtioNetHdrLen:])
// Calculate the pseudo header checksum and place it at the TCP checksum
// offset. Downstream checksum offloading will combine this with computation
// of the tcp header and payload checksum.
addrLen := 4
addrOffset := ipv4SrcAddrOffset
if isV6 {
addrLen = 16
addrOffset = ipv6SrcAddrOffset
}
srcAddrAt := bufsOffset + addrOffset
srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen]
dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2]
psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(coalescedLen-int(item.iphLen)))
binary.BigEndian.PutUint16(pktHead[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum))
item.numMerged++
return coalesceSuccess
}
const (
ipv4FlagMoreFragments uint8 = 0x20
)
const (
ipv4SrcAddrOffset = 12
ipv6SrcAddrOffset = 8
maxUint16 = 1<<16 - 1
)
// tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with
// existing packets tracked in table. It will return false when pktI is not
// coalesced, otherwise true. This indicates to the caller if bufs[pktI]
// should be written to the Device.
func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) (pktCoalesced bool) {
pkt := bufs[pktI][offset:]
if len(pkt) > maxUint16 {
// A valid IPv4 or IPv6 packet will never exceed this.
return false
}
iphLen := int((pkt[0] & 0x0F) * 4)
if isV6 {
iphLen = 40
ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:]))
if ipv6HPayloadLen != len(pkt)-iphLen {
return false
}
} else {
totalLen := int(binary.BigEndian.Uint16(pkt[2:]))
if totalLen != len(pkt) {
return false
}
}
if len(pkt) < iphLen {
return false
}
tcphLen := int((pkt[iphLen+12] >> 4) * 4)
if tcphLen < 20 || tcphLen > 60 {
return false
}
if len(pkt) < iphLen+tcphLen {
return false
}
if !isV6 {
if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 {
// no GRO support for fragmented segments for now
return false
}
}
tcpFlags := pkt[iphLen+tcpFlagsOffset]
var pshSet bool
// not a candidate if any non-ACK flags (except PSH+ACK) are set
if tcpFlags != tcpFlagACK {
if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH {
return false
}
pshSet = true
}
gsoSize := uint16(len(pkt) - tcphLen - iphLen)
// not a candidate if payload len is 0
if gsoSize < 1 {
return false
}
seq := binary.BigEndian.Uint32(pkt[iphLen+4:])
srcAddrOffset := ipv4SrcAddrOffset
addrLen := 4
if isV6 {
srcAddrOffset = ipv6SrcAddrOffset
addrLen = 16
}
items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
if !existing {
return false
}
for i := len(items) - 1; i >= 0; i-- {
// In the best case of packets arriving in order iterating in reverse is
// more efficient if there are multiple items for a given flow. This
// also enables a natural table.deleteAt() in the
// coalesceItemInvalidCSum case without the need for index tracking.
// This algorithm makes a best effort to coalesce in the event of
// unordered packets, where pkt may land anywhere in items from a
// sequence number perspective, however once an item is inserted into
// the table it is never compared across other items later.
item := items[i]
can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset)
if can != coalesceUnavailable {
result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6)
switch result {
case coalesceSuccess:
table.updateAt(item, i)
return true
case coalesceItemInvalidCSum:
// delete the item with an invalid csum
table.deleteAt(item.key, i)
case coalescePktInvalidCSum:
// no point in inserting an item that we can't coalesce
return false
default:
}
}
}
// failed to coalesce with any other packets; store the item in the flow
table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI)
return false
}
func isTCP4NoIPOptions(b []byte) bool {
if len(b) < 40 {
return false
}
if b[0]>>4 != 4 {
return false
}
if b[0]&0x0F != 5 {
return false
}
if b[9] != unix.IPPROTO_TCP {
return false
}
return true
}
func isTCP6NoEH(b []byte) bool {
if len(b) < 60 {
return false
}
if b[0]>>4 != 6 {
return false
}
if b[6] != unix.IPPROTO_TCP {
return false
}
return true
}
// handleGRO evaluates bufs for GRO, and writes the indices of the resulting
// packets into toWrite. toWrite, tcp4Table, and tcp6Table should initially be
// empty (but non-nil), and are passed in to save allocs as the caller may reset
// and recycle them across vectors of packets.
func handleGRO(bufs [][]byte, offset int, tcp4Table, tcp6Table *tcpGROTable, toWrite *[]int) error {
for i := range bufs {
if offset < virtioNetHdrLen || offset > len(bufs[i])-1 {
return errors.New("invalid offset")
}
var coalesced bool
switch {
case isTCP4NoIPOptions(bufs[i][offset:]): // ipv4 packets w/IP options do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp4Table, false)
case isTCP6NoEH(bufs[i][offset:]): // ipv6 packets w/extension headers do not coalesce
coalesced = tcpGRO(bufs, offset, i, tcp6Table, true)
}
if !coalesced {
hdr := virtioNetHdr{}
err := hdr.encode(bufs[i][offset-virtioNetHdrLen:])
if err != nil {
return err
}
*toWrite = append(*toWrite, i)
}
}
return nil
}
// tcpTSO splits packets from in into outBuffs, writing the size of each
// element into sizes. It returns the number of buffers populated, and/or an
// error.
func tcpTSO(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int) (int, error) {
iphLen := int(hdr.csumStart)
srcAddrOffset := ipv6SrcAddrOffset
addrLen := 16
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
in[10], in[11] = 0, 0 // clear ipv4 header checksum
srcAddrOffset = ipv4SrcAddrOffset
addrLen = 4
}
tcpCSumAt := int(hdr.csumStart + hdr.csumOffset)
in[tcpCSumAt], in[tcpCSumAt+1] = 0, 0 // clear tcp checksum
firstTCPSeqNum := binary.BigEndian.Uint32(in[hdr.csumStart+4:])
nextSegmentDataAt := int(hdr.hdrLen)
i := 0
for ; nextSegmentDataAt < len(in); i++ {
if i == len(outBuffs) {
return i - 1, ErrTooManySegments
}
nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize)
if nextSegmentEnd > len(in) {
nextSegmentEnd = len(in)
}
segmentDataLen := nextSegmentEnd - nextSegmentDataAt
totalLen := int(hdr.hdrLen) + segmentDataLen
sizes[i] = totalLen
out := outBuffs[i][outOffset:]
copy(out, in[:iphLen])
if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 {
// For IPv4 we are responsible for incrementing the ID field,
// updating the total len field, and recalculating the header
// checksum.
if i > 0 {
id := binary.BigEndian.Uint16(out[4:])
id += uint16(i)
binary.BigEndian.PutUint16(out[4:], id)
}
binary.BigEndian.PutUint16(out[2:], uint16(totalLen))
ipv4CSum := ^checksum(out[:iphLen], 0)
binary.BigEndian.PutUint16(out[10:], ipv4CSum)
} else {
// For IPv6 we are responsible for updating the payload length field.
binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen))
}
// TCP header
copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen])
tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i))
binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq)
if nextSegmentEnd != len(in) {
// FIN and PSH should only be set on last segment
clearFlags := tcpFlagFIN | tcpFlagPSH
out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags
}
// payload
copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd])
// TCP checksum
tcpHLen := int(hdr.hdrLen - hdr.csumStart)
tcpLenForPseudo := uint16(tcpHLen + segmentDataLen)
tcpCSumNoFold := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], tcpLenForPseudo)
tcpCSum := ^checksum(out[hdr.csumStart:totalLen], tcpCSumNoFold)
binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], tcpCSum)
nextSegmentDataAt += int(hdr.gsoSize)
}
return i, nil
}
func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error {
cSumAt := cSumStart + cSumOffset
// The initial value at the checksum offset should be summed with the
// checksum we compute. This is typically the pseudo-header checksum.
initial := binary.BigEndian.Uint16(in[cSumAt:])
in[cSumAt], in[cSumAt+1] = 0, 0
binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial)))
return nil
}