wireguard-go/device/timers.go
Jordan Whited 4ffa9c2032 device: change Peer.endpoint locking to reduce contention
Access to Peer.endpoint was previously synchronized by Peer.RWMutex.
This has now moved to Peer.endpoint.Mutex. Peer.SendBuffers() is now the
sole caller of Endpoint.ClearSrc(), which is signaled via a new bool,
Peer.endpoint.clearSrcOnTx. Previous Callers of Endpoint.ClearSrc() now
set this bool, primarily via peer.markEndpointSrcForClearing().
Peer.SetEndpointFromPacket() clears Peer.endpoint.clearSrcOnTx when an
updated conn.Endpoint is stored. This maintains the same event order as
before, i.e. a conn.Endpoint received after peer.endpoint.clearSrcOnTx
is set, but before the next Peer.SendBuffers() call results in the
latest conn.Endpoint source being used for the next packet transmission.

These changes result in throughput improvements for single flow,
parallel (-P n) flow, and bidirectional (--bidir) flow iperf3 TCP/UDP
tests as measured on both Linux and Windows. Latency under load improves
especially for high throughput Linux scenarios. These improvements are
likely realized on all platforms to some degree, as the changes are not
platform-specific.

Co-authored-by: James Tucker <james@tailscale.com>
Signed-off-by: James Tucker <james@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
2023-12-11 16:34:09 +01:00

222 lines
6.7 KiB
Go

/* SPDX-License-Identifier: MIT
*
* Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved.
*
* This is based heavily on timers.c from the kernel implementation.
*/
package device
import (
"sync"
"time"
_ "unsafe"
)
//go:linkname fastrandn runtime.fastrandn
func fastrandn(n uint32) uint32
// A Timer manages time-based aspects of the WireGuard protocol.
// Timer roughly copies the interface of the Linux kernel's struct timer_list.
type Timer struct {
*time.Timer
modifyingLock sync.RWMutex
runningLock sync.Mutex
isPending bool
}
func (peer *Peer) NewTimer(expirationFunction func(*Peer)) *Timer {
timer := &Timer{}
timer.Timer = time.AfterFunc(time.Hour, func() {
timer.runningLock.Lock()
defer timer.runningLock.Unlock()
timer.modifyingLock.Lock()
if !timer.isPending {
timer.modifyingLock.Unlock()
return
}
timer.isPending = false
timer.modifyingLock.Unlock()
expirationFunction(peer)
})
timer.Stop()
return timer
}
func (timer *Timer) Mod(d time.Duration) {
timer.modifyingLock.Lock()
timer.isPending = true
timer.Reset(d)
timer.modifyingLock.Unlock()
}
func (timer *Timer) Del() {
timer.modifyingLock.Lock()
timer.isPending = false
timer.Stop()
timer.modifyingLock.Unlock()
}
func (timer *Timer) DelSync() {
timer.Del()
timer.runningLock.Lock()
timer.Del()
timer.runningLock.Unlock()
}
func (timer *Timer) IsPending() bool {
timer.modifyingLock.RLock()
defer timer.modifyingLock.RUnlock()
return timer.isPending
}
func (peer *Peer) timersActive() bool {
return peer.isRunning.Load() && peer.device != nil && peer.device.isUp()
}
func expiredRetransmitHandshake(peer *Peer) {
if peer.timers.handshakeAttempts.Load() > MaxTimerHandshakes {
peer.device.log.Verbosef("%s - Handshake did not complete after %d attempts, giving up", peer, MaxTimerHandshakes+2)
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
/* We drop all packets without a keypair and don't try again,
* if we try unsuccessfully for too long to make a handshake.
*/
peer.FlushStagedPackets()
/* We set a timer for destroying any residue that might be left
* of a partial exchange.
*/
if peer.timersActive() && !peer.timers.zeroKeyMaterial.IsPending() {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
} else {
peer.timers.handshakeAttempts.Add(1)
peer.device.log.Verbosef("%s - Handshake did not complete after %d seconds, retrying (try %d)", peer, int(RekeyTimeout.Seconds()), peer.timers.handshakeAttempts.Load()+1)
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.markEndpointSrcForClearing()
peer.SendHandshakeInitiation(true)
}
}
func expiredSendKeepalive(peer *Peer) {
peer.SendKeepalive()
if peer.timers.needAnotherKeepalive.Load() {
peer.timers.needAnotherKeepalive.Store(false)
if peer.timersActive() {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
}
}
}
func expiredNewHandshake(peer *Peer) {
peer.device.log.Verbosef("%s - Retrying handshake because we stopped hearing back after %d seconds", peer, int((KeepaliveTimeout + RekeyTimeout).Seconds()))
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.markEndpointSrcForClearing()
peer.SendHandshakeInitiation(false)
}
func expiredZeroKeyMaterial(peer *Peer) {
peer.device.log.Verbosef("%s - Removing all keys, since we haven't received a new one in %d seconds", peer, int((RejectAfterTime * 3).Seconds()))
peer.ZeroAndFlushAll()
}
func expiredPersistentKeepalive(peer *Peer) {
if peer.persistentKeepaliveInterval.Load() > 0 {
peer.SendKeepalive()
}
}
/* Should be called after an authenticated data packet is sent. */
func (peer *Peer) timersDataSent() {
if peer.timersActive() && !peer.timers.newHandshake.IsPending() {
peer.timers.newHandshake.Mod(KeepaliveTimeout + RekeyTimeout + time.Millisecond*time.Duration(fastrandn(RekeyTimeoutJitterMaxMs)))
}
}
/* Should be called after an authenticated data packet is received. */
func (peer *Peer) timersDataReceived() {
if peer.timersActive() {
if !peer.timers.sendKeepalive.IsPending() {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
} else {
peer.timers.needAnotherKeepalive.Store(true)
}
}
}
/* Should be called after any type of authenticated packet is sent -- keepalive, data, or handshake. */
func (peer *Peer) timersAnyAuthenticatedPacketSent() {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
}
/* Should be called after any type of authenticated packet is received -- keepalive, data, or handshake. */
func (peer *Peer) timersAnyAuthenticatedPacketReceived() {
if peer.timersActive() {
peer.timers.newHandshake.Del()
}
}
/* Should be called after a handshake initiation message is sent. */
func (peer *Peer) timersHandshakeInitiated() {
if peer.timersActive() {
peer.timers.retransmitHandshake.Mod(RekeyTimeout + time.Millisecond*time.Duration(fastrandn(RekeyTimeoutJitterMaxMs)))
}
}
/* Should be called after a handshake response message is received and processed or when getting key confirmation via the first data message. */
func (peer *Peer) timersHandshakeComplete() {
if peer.timersActive() {
peer.timers.retransmitHandshake.Del()
}
peer.timers.handshakeAttempts.Store(0)
peer.timers.sentLastMinuteHandshake.Store(false)
peer.lastHandshakeNano.Store(time.Now().UnixNano())
}
/* Should be called after an ephemeral key is created, which is before sending a handshake response or after receiving a handshake response. */
func (peer *Peer) timersSessionDerived() {
if peer.timersActive() {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
}
/* Should be called before a packet with authentication -- keepalive, data, or handshake -- is sent, or after one is received. */
func (peer *Peer) timersAnyAuthenticatedPacketTraversal() {
keepalive := peer.persistentKeepaliveInterval.Load()
if keepalive > 0 && peer.timersActive() {
peer.timers.persistentKeepalive.Mod(time.Duration(keepalive) * time.Second)
}
}
func (peer *Peer) timersInit() {
peer.timers.retransmitHandshake = peer.NewTimer(expiredRetransmitHandshake)
peer.timers.sendKeepalive = peer.NewTimer(expiredSendKeepalive)
peer.timers.newHandshake = peer.NewTimer(expiredNewHandshake)
peer.timers.zeroKeyMaterial = peer.NewTimer(expiredZeroKeyMaterial)
peer.timers.persistentKeepalive = peer.NewTimer(expiredPersistentKeepalive)
}
func (peer *Peer) timersStart() {
peer.timers.handshakeAttempts.Store(0)
peer.timers.sentLastMinuteHandshake.Store(false)
peer.timers.needAnotherKeepalive.Store(false)
}
func (peer *Peer) timersStop() {
peer.timers.retransmitHandshake.DelSync()
peer.timers.sendKeepalive.DelSync()
peer.timers.newHandshake.DelSync()
peer.timers.zeroKeyMaterial.DelSync()
peer.timers.persistentKeepalive.DelSync()
}