/* SPDX-License-Identifier: MIT * * Copyright (C) 2017-2023 WireGuard LLC. All Rights Reserved. */ package tun import ( "bytes" "encoding/binary" "errors" "io" "unsafe" "golang.org/x/sys/unix" "gitea.hbanafa.com/hesham/wireguard-go/conn" ) const tcpFlagsOffset = 13 const ( tcpFlagFIN uint8 = 0x01 tcpFlagPSH uint8 = 0x08 tcpFlagACK uint8 = 0x10 ) // virtioNetHdr is defined in the kernel in include/uapi/linux/virtio_net.h. The // kernel symbol is virtio_net_hdr. type virtioNetHdr struct { flags uint8 gsoType uint8 hdrLen uint16 gsoSize uint16 csumStart uint16 csumOffset uint16 } func (v *virtioNetHdr) decode(b []byte) error { if len(b) < virtioNetHdrLen { return io.ErrShortBuffer } copy(unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen), b[:virtioNetHdrLen]) return nil } func (v *virtioNetHdr) encode(b []byte) error { if len(b) < virtioNetHdrLen { return io.ErrShortBuffer } copy(b[:virtioNetHdrLen], unsafe.Slice((*byte)(unsafe.Pointer(v)), virtioNetHdrLen)) return nil } const ( // virtioNetHdrLen is the length in bytes of virtioNetHdr. This matches the // shape of the C ABI for its kernel counterpart -- sizeof(virtio_net_hdr). virtioNetHdrLen = int(unsafe.Sizeof(virtioNetHdr{})) ) // tcpFlowKey represents the key for a TCP flow. type tcpFlowKey struct { srcAddr, dstAddr [16]byte srcPort, dstPort uint16 rxAck uint32 // varying ack values should not be coalesced. Treat them as separate flows. isV6 bool } // tcpGROTable holds flow and coalescing information for the purposes of TCP GRO. type tcpGROTable struct { itemsByFlow map[tcpFlowKey][]tcpGROItem itemsPool [][]tcpGROItem } func newTCPGROTable() *tcpGROTable { t := &tcpGROTable{ itemsByFlow: make(map[tcpFlowKey][]tcpGROItem, conn.IdealBatchSize), itemsPool: make([][]tcpGROItem, conn.IdealBatchSize), } for i := range t.itemsPool { t.itemsPool[i] = make([]tcpGROItem, 0, conn.IdealBatchSize) } return t } func newTCPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset int) tcpFlowKey { key := tcpFlowKey{} addrSize := dstAddrOffset - srcAddrOffset copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset]) copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize]) key.srcPort = binary.BigEndian.Uint16(pkt[tcphOffset:]) key.dstPort = binary.BigEndian.Uint16(pkt[tcphOffset+2:]) key.rxAck = binary.BigEndian.Uint32(pkt[tcphOffset+8:]) key.isV6 = addrSize == 16 return key } // lookupOrInsert looks up a flow for the provided packet and metadata, // returning the packets found for the flow, or inserting a new one if none // is found. func (t *tcpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) ([]tcpGROItem, bool) { key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) items, ok := t.itemsByFlow[key] if ok { return items, ok } // TODO: insert() performs another map lookup. This could be rearranged to avoid. t.insert(pkt, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex) return nil, false } // insert an item in the table for the provided packet and packet metadata. func (t *tcpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, tcphOffset, tcphLen, bufsIndex int) { key := newTCPFlowKey(pkt, srcAddrOffset, dstAddrOffset, tcphOffset) item := tcpGROItem{ key: key, bufsIndex: uint16(bufsIndex), gsoSize: uint16(len(pkt[tcphOffset+tcphLen:])), iphLen: uint8(tcphOffset), tcphLen: uint8(tcphLen), sentSeq: binary.BigEndian.Uint32(pkt[tcphOffset+4:]), pshSet: pkt[tcphOffset+tcpFlagsOffset]&tcpFlagPSH != 0, } items, ok := t.itemsByFlow[key] if !ok { items = t.newItems() } items = append(items, item) t.itemsByFlow[key] = items } func (t *tcpGROTable) updateAt(item tcpGROItem, i int) { items, _ := t.itemsByFlow[item.key] items[i] = item } func (t *tcpGROTable) deleteAt(key tcpFlowKey, i int) { items, _ := t.itemsByFlow[key] items = append(items[:i], items[i+1:]...) t.itemsByFlow[key] = items } // tcpGROItem represents bookkeeping data for a TCP packet during the lifetime // of a GRO evaluation across a vector of packets. type tcpGROItem struct { key tcpFlowKey sentSeq uint32 // the sequence number bufsIndex uint16 // the index into the original bufs slice numMerged uint16 // the number of packets merged into this item gsoSize uint16 // payload size iphLen uint8 // ip header len tcphLen uint8 // tcp header len pshSet bool // psh flag is set } func (t *tcpGROTable) newItems() []tcpGROItem { var items []tcpGROItem items, t.itemsPool = t.itemsPool[len(t.itemsPool)-1], t.itemsPool[:len(t.itemsPool)-1] return items } func (t *tcpGROTable) reset() { for k, items := range t.itemsByFlow { items = items[:0] t.itemsPool = append(t.itemsPool, items) delete(t.itemsByFlow, k) } } // udpFlowKey represents the key for a UDP flow. type udpFlowKey struct { srcAddr, dstAddr [16]byte srcPort, dstPort uint16 isV6 bool } // udpGROTable holds flow and coalescing information for the purposes of UDP GRO. type udpGROTable struct { itemsByFlow map[udpFlowKey][]udpGROItem itemsPool [][]udpGROItem } func newUDPGROTable() *udpGROTable { u := &udpGROTable{ itemsByFlow: make(map[udpFlowKey][]udpGROItem, conn.IdealBatchSize), itemsPool: make([][]udpGROItem, conn.IdealBatchSize), } for i := range u.itemsPool { u.itemsPool[i] = make([]udpGROItem, 0, conn.IdealBatchSize) } return u } func newUDPFlowKey(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset int) udpFlowKey { key := udpFlowKey{} addrSize := dstAddrOffset - srcAddrOffset copy(key.srcAddr[:], pkt[srcAddrOffset:dstAddrOffset]) copy(key.dstAddr[:], pkt[dstAddrOffset:dstAddrOffset+addrSize]) key.srcPort = binary.BigEndian.Uint16(pkt[udphOffset:]) key.dstPort = binary.BigEndian.Uint16(pkt[udphOffset+2:]) key.isV6 = addrSize == 16 return key } // lookupOrInsert looks up a flow for the provided packet and metadata, // returning the packets found for the flow, or inserting a new one if none // is found. func (u *udpGROTable) lookupOrInsert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int) ([]udpGROItem, bool) { key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset) items, ok := u.itemsByFlow[key] if ok { return items, ok } // TODO: insert() performs another map lookup. This could be rearranged to avoid. u.insert(pkt, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex, false) return nil, false } // insert an item in the table for the provided packet and packet metadata. func (u *udpGROTable) insert(pkt []byte, srcAddrOffset, dstAddrOffset, udphOffset, bufsIndex int, cSumKnownInvalid bool) { key := newUDPFlowKey(pkt, srcAddrOffset, dstAddrOffset, udphOffset) item := udpGROItem{ key: key, bufsIndex: uint16(bufsIndex), gsoSize: uint16(len(pkt[udphOffset+udphLen:])), iphLen: uint8(udphOffset), cSumKnownInvalid: cSumKnownInvalid, } items, ok := u.itemsByFlow[key] if !ok { items = u.newItems() } items = append(items, item) u.itemsByFlow[key] = items } func (u *udpGROTable) updateAt(item udpGROItem, i int) { items, _ := u.itemsByFlow[item.key] items[i] = item } // udpGROItem represents bookkeeping data for a UDP packet during the lifetime // of a GRO evaluation across a vector of packets. type udpGROItem struct { key udpFlowKey bufsIndex uint16 // the index into the original bufs slice numMerged uint16 // the number of packets merged into this item gsoSize uint16 // payload size iphLen uint8 // ip header len cSumKnownInvalid bool // UDP header checksum validity; a false value DOES NOT imply valid, just unknown. } func (u *udpGROTable) newItems() []udpGROItem { var items []udpGROItem items, u.itemsPool = u.itemsPool[len(u.itemsPool)-1], u.itemsPool[:len(u.itemsPool)-1] return items } func (u *udpGROTable) reset() { for k, items := range u.itemsByFlow { items = items[:0] u.itemsPool = append(u.itemsPool, items) delete(u.itemsByFlow, k) } } // canCoalesce represents the outcome of checking if two TCP packets are // candidates for coalescing. type canCoalesce int const ( coalescePrepend canCoalesce = -1 coalesceUnavailable canCoalesce = 0 coalesceAppend canCoalesce = 1 ) // ipHeadersCanCoalesce returns true if the IP headers found in pktA and pktB // meet all requirements to be merged as part of a GRO operation, otherwise it // returns false. func ipHeadersCanCoalesce(pktA, pktB []byte) bool { if len(pktA) < 9 || len(pktB) < 9 { return false } if pktA[0]>>4 == 6 { if pktA[0] != pktB[0] || pktA[1]>>4 != pktB[1]>>4 { // cannot coalesce with unequal Traffic class values return false } if pktA[7] != pktB[7] { // cannot coalesce with unequal Hop limit values return false } } else { if pktA[1] != pktB[1] { // cannot coalesce with unequal ToS values return false } if pktA[6]>>5 != pktB[6]>>5 { // cannot coalesce with unequal DF or reserved bits. MF is checked // further up the stack. return false } if pktA[8] != pktB[8] { // cannot coalesce with unequal TTL values return false } } return true } // udpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet // described by item. iphLen and gsoSize describe pkt. bufs is the vector of // packets involved in the current GRO evaluation. bufsOffset is the offset at // which packet data begins within bufs. func udpPacketsCanCoalesce(pkt []byte, iphLen uint8, gsoSize uint16, item udpGROItem, bufs [][]byte, bufsOffset int) canCoalesce { pktTarget := bufs[item.bufsIndex][bufsOffset:] if !ipHeadersCanCoalesce(pkt, pktTarget) { return coalesceUnavailable } if len(pktTarget[iphLen+udphLen:])%int(item.gsoSize) != 0 { // A smaller than gsoSize packet has been appended previously. // Nothing can come after a smaller packet on the end. return coalesceUnavailable } if gsoSize > item.gsoSize { // We cannot have a larger packet following a smaller one. return coalesceUnavailable } return coalesceAppend } // tcpPacketsCanCoalesce evaluates if pkt can be coalesced with the packet // described by item. This function makes considerations that match the kernel's // GRO self tests, which can be found in tools/testing/selftests/net/gro.c. func tcpPacketsCanCoalesce(pkt []byte, iphLen, tcphLen uint8, seq uint32, pshSet bool, gsoSize uint16, item tcpGROItem, bufs [][]byte, bufsOffset int) canCoalesce { pktTarget := bufs[item.bufsIndex][bufsOffset:] if tcphLen != item.tcphLen { // cannot coalesce with unequal tcp options len return coalesceUnavailable } if tcphLen > 20 { if !bytes.Equal(pkt[iphLen+20:iphLen+tcphLen], pktTarget[item.iphLen+20:iphLen+tcphLen]) { // cannot coalesce with unequal tcp options return coalesceUnavailable } } if !ipHeadersCanCoalesce(pkt, pktTarget) { return coalesceUnavailable } // seq adjacency lhsLen := item.gsoSize lhsLen += item.numMerged * item.gsoSize if seq == item.sentSeq+uint32(lhsLen) { // pkt aligns following item from a seq num perspective if item.pshSet { // We cannot append to a segment that has the PSH flag set, PSH // can only be set on the final segment in a reassembled group. return coalesceUnavailable } if len(pktTarget[iphLen+tcphLen:])%int(item.gsoSize) != 0 { // A smaller than gsoSize packet has been appended previously. // Nothing can come after a smaller packet on the end. return coalesceUnavailable } if gsoSize > item.gsoSize { // We cannot have a larger packet following a smaller one. return coalesceUnavailable } return coalesceAppend } else if seq+uint32(gsoSize) == item.sentSeq { // pkt aligns in front of item from a seq num perspective if pshSet { // We cannot prepend with a segment that has the PSH flag set, PSH // can only be set on the final segment in a reassembled group. return coalesceUnavailable } if gsoSize < item.gsoSize { // We cannot have a larger packet following a smaller one. return coalesceUnavailable } if gsoSize > item.gsoSize && item.numMerged > 0 { // There's at least one previous merge, and we're larger than all // previous. This would put multiple smaller packets on the end. return coalesceUnavailable } return coalescePrepend } return coalesceUnavailable } func checksumValid(pkt []byte, iphLen, proto uint8, isV6 bool) bool { srcAddrAt := ipv4SrcAddrOffset addrSize := 4 if isV6 { srcAddrAt = ipv6SrcAddrOffset addrSize = 16 } lenForPseudo := uint16(len(pkt) - int(iphLen)) cSum := pseudoHeaderChecksumNoFold(proto, pkt[srcAddrAt:srcAddrAt+addrSize], pkt[srcAddrAt+addrSize:srcAddrAt+addrSize*2], lenForPseudo) return ^checksum(pkt[iphLen:], cSum) == 0 } // coalesceResult represents the result of attempting to coalesce two TCP // packets. type coalesceResult int const ( coalesceInsufficientCap coalesceResult = iota coalescePSHEnding coalesceItemInvalidCSum coalescePktInvalidCSum coalesceSuccess ) // coalesceUDPPackets attempts to coalesce pkt with the packet described by // item, and returns the outcome. func coalesceUDPPackets(pkt []byte, item *udpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult { pktHead := bufs[item.bufsIndex][bufsOffset:] // the packet that will end up at the front headersLen := item.iphLen + udphLen coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen) if cap(pktHead)-bufsOffset < coalescedLen { // We don't want to allocate a new underlying array if capacity is // too small. return coalesceInsufficientCap } if item.numMerged == 0 { if item.cSumKnownInvalid || !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_UDP, isV6) { return coalesceItemInvalidCSum } } if !checksumValid(pkt, item.iphLen, unix.IPPROTO_UDP, isV6) { return coalescePktInvalidCSum } extendBy := len(pkt) - int(headersLen) bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...) copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:]) item.numMerged++ return coalesceSuccess } // coalesceTCPPackets attempts to coalesce pkt with the packet described by // item, and returns the outcome. This function may swap bufs elements in the // event of a prepend as item's bufs index is already being tracked for writing // to a Device. func coalesceTCPPackets(mode canCoalesce, pkt []byte, pktBuffsIndex int, gsoSize uint16, seq uint32, pshSet bool, item *tcpGROItem, bufs [][]byte, bufsOffset int, isV6 bool) coalesceResult { var pktHead []byte // the packet that will end up at the front headersLen := item.iphLen + item.tcphLen coalescedLen := len(bufs[item.bufsIndex][bufsOffset:]) + len(pkt) - int(headersLen) // Copy data if mode == coalescePrepend { pktHead = pkt if cap(pkt)-bufsOffset < coalescedLen { // We don't want to allocate a new underlying array if capacity is // too small. return coalesceInsufficientCap } if pshSet { return coalescePSHEnding } if item.numMerged == 0 { if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) { return coalesceItemInvalidCSum } } if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) { return coalescePktInvalidCSum } item.sentSeq = seq extendBy := coalescedLen - len(pktHead) bufs[pktBuffsIndex] = append(bufs[pktBuffsIndex], make([]byte, extendBy)...) copy(bufs[pktBuffsIndex][bufsOffset+len(pkt):], bufs[item.bufsIndex][bufsOffset+int(headersLen):]) // Flip the slice headers in bufs as part of prepend. The index of item // is already being tracked for writing. bufs[item.bufsIndex], bufs[pktBuffsIndex] = bufs[pktBuffsIndex], bufs[item.bufsIndex] } else { pktHead = bufs[item.bufsIndex][bufsOffset:] if cap(pktHead)-bufsOffset < coalescedLen { // We don't want to allocate a new underlying array if capacity is // too small. return coalesceInsufficientCap } if item.numMerged == 0 { if !checksumValid(bufs[item.bufsIndex][bufsOffset:], item.iphLen, unix.IPPROTO_TCP, isV6) { return coalesceItemInvalidCSum } } if !checksumValid(pkt, item.iphLen, unix.IPPROTO_TCP, isV6) { return coalescePktInvalidCSum } if pshSet { // We are appending a segment with PSH set. item.pshSet = pshSet pktHead[item.iphLen+tcpFlagsOffset] |= tcpFlagPSH } extendBy := len(pkt) - int(headersLen) bufs[item.bufsIndex] = append(bufs[item.bufsIndex], make([]byte, extendBy)...) copy(bufs[item.bufsIndex][bufsOffset+len(pktHead):], pkt[headersLen:]) } if gsoSize > item.gsoSize { item.gsoSize = gsoSize } item.numMerged++ return coalesceSuccess } const ( ipv4FlagMoreFragments uint8 = 0x20 ) const ( ipv4SrcAddrOffset = 12 ipv6SrcAddrOffset = 8 maxUint16 = 1<<16 - 1 ) type groResult int const ( groResultNoop groResult = iota groResultTableInsert groResultCoalesced ) // tcpGRO evaluates the TCP packet at pktI in bufs for coalescing with // existing packets tracked in table. It returns a groResultNoop when no // action was taken, groResultTableInsert when the evaluated packet was // inserted into table, and groResultCoalesced when the evaluated packet was // coalesced with another packet in table. func tcpGRO(bufs [][]byte, offset int, pktI int, table *tcpGROTable, isV6 bool) groResult { pkt := bufs[pktI][offset:] if len(pkt) > maxUint16 { // A valid IPv4 or IPv6 packet will never exceed this. return groResultNoop } iphLen := int((pkt[0] & 0x0F) * 4) if isV6 { iphLen = 40 ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:])) if ipv6HPayloadLen != len(pkt)-iphLen { return groResultNoop } } else { totalLen := int(binary.BigEndian.Uint16(pkt[2:])) if totalLen != len(pkt) { return groResultNoop } } if len(pkt) < iphLen { return groResultNoop } tcphLen := int((pkt[iphLen+12] >> 4) * 4) if tcphLen < 20 || tcphLen > 60 { return groResultNoop } if len(pkt) < iphLen+tcphLen { return groResultNoop } if !isV6 { if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 { // no GRO support for fragmented segments for now return groResultNoop } } tcpFlags := pkt[iphLen+tcpFlagsOffset] var pshSet bool // not a candidate if any non-ACK flags (except PSH+ACK) are set if tcpFlags != tcpFlagACK { if pkt[iphLen+tcpFlagsOffset] != tcpFlagACK|tcpFlagPSH { return groResultNoop } pshSet = true } gsoSize := uint16(len(pkt) - tcphLen - iphLen) // not a candidate if payload len is 0 if gsoSize < 1 { return groResultNoop } seq := binary.BigEndian.Uint32(pkt[iphLen+4:]) srcAddrOffset := ipv4SrcAddrOffset addrLen := 4 if isV6 { srcAddrOffset = ipv6SrcAddrOffset addrLen = 16 } items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) if !existing { return groResultTableInsert } for i := len(items) - 1; i >= 0; i-- { // In the best case of packets arriving in order iterating in reverse is // more efficient if there are multiple items for a given flow. This // also enables a natural table.deleteAt() in the // coalesceItemInvalidCSum case without the need for index tracking. // This algorithm makes a best effort to coalesce in the event of // unordered packets, where pkt may land anywhere in items from a // sequence number perspective, however once an item is inserted into // the table it is never compared across other items later. item := items[i] can := tcpPacketsCanCoalesce(pkt, uint8(iphLen), uint8(tcphLen), seq, pshSet, gsoSize, item, bufs, offset) if can != coalesceUnavailable { result := coalesceTCPPackets(can, pkt, pktI, gsoSize, seq, pshSet, &item, bufs, offset, isV6) switch result { case coalesceSuccess: table.updateAt(item, i) return groResultCoalesced case coalesceItemInvalidCSum: // delete the item with an invalid csum table.deleteAt(item.key, i) case coalescePktInvalidCSum: // no point in inserting an item that we can't coalesce return groResultNoop default: } } } // failed to coalesce with any other packets; store the item in the flow table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, tcphLen, pktI) return groResultTableInsert } // applyTCPCoalesceAccounting updates bufs to account for coalescing based on the // metadata found in table. func applyTCPCoalesceAccounting(bufs [][]byte, offset int, table *tcpGROTable) error { for _, items := range table.itemsByFlow { for _, item := range items { if item.numMerged > 0 { hdr := virtioNetHdr{ flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb hdrLen: uint16(item.iphLen + item.tcphLen), gsoSize: item.gsoSize, csumStart: uint16(item.iphLen), csumOffset: 16, } pkt := bufs[item.bufsIndex][offset:] // Recalculate the total len (IPv4) or payload len (IPv6). // Recalculate the (IPv4) header checksum. if item.key.isV6 { hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV6 binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len } else { hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_TCPV4 pkt[10], pkt[11] = 0, 0 binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field } err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) if err != nil { return err } // Calculate the pseudo header checksum and place it at the TCP // checksum offset. Downstream checksum offloading will combine // this with computation of the tcp header and payload checksum. addrLen := 4 addrOffset := ipv4SrcAddrOffset if item.key.isV6 { addrLen = 16 addrOffset = ipv6SrcAddrOffset } srcAddrAt := offset + addrOffset srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen] dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2] psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_TCP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen))) binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum)) } else { hdr := virtioNetHdr{} err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) if err != nil { return err } } } } return nil } // applyUDPCoalesceAccounting updates bufs to account for coalescing based on the // metadata found in table. func applyUDPCoalesceAccounting(bufs [][]byte, offset int, table *udpGROTable) error { for _, items := range table.itemsByFlow { for _, item := range items { if item.numMerged > 0 { hdr := virtioNetHdr{ flags: unix.VIRTIO_NET_HDR_F_NEEDS_CSUM, // this turns into CHECKSUM_PARTIAL in the skb hdrLen: uint16(item.iphLen + udphLen), gsoSize: item.gsoSize, csumStart: uint16(item.iphLen), csumOffset: 6, } pkt := bufs[item.bufsIndex][offset:] // Recalculate the total len (IPv4) or payload len (IPv6). // Recalculate the (IPv4) header checksum. hdr.gsoType = unix.VIRTIO_NET_HDR_GSO_UDP_L4 if item.key.isV6 { binary.BigEndian.PutUint16(pkt[4:], uint16(len(pkt))-uint16(item.iphLen)) // set new IPv6 header payload len } else { pkt[10], pkt[11] = 0, 0 binary.BigEndian.PutUint16(pkt[2:], uint16(len(pkt))) // set new total length iphCSum := ^checksum(pkt[:item.iphLen], 0) // compute IPv4 header checksum binary.BigEndian.PutUint16(pkt[10:], iphCSum) // set IPv4 header checksum field } err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) if err != nil { return err } // Recalculate the UDP len field value binary.BigEndian.PutUint16(pkt[item.iphLen+4:], uint16(len(pkt[item.iphLen:]))) // Calculate the pseudo header checksum and place it at the UDP // checksum offset. Downstream checksum offloading will combine // this with computation of the udp header and payload checksum. addrLen := 4 addrOffset := ipv4SrcAddrOffset if item.key.isV6 { addrLen = 16 addrOffset = ipv6SrcAddrOffset } srcAddrAt := offset + addrOffset srcAddr := bufs[item.bufsIndex][srcAddrAt : srcAddrAt+addrLen] dstAddr := bufs[item.bufsIndex][srcAddrAt+addrLen : srcAddrAt+addrLen*2] psum := pseudoHeaderChecksumNoFold(unix.IPPROTO_UDP, srcAddr, dstAddr, uint16(len(pkt)-int(item.iphLen))) binary.BigEndian.PutUint16(pkt[hdr.csumStart+hdr.csumOffset:], checksum([]byte{}, psum)) } else { hdr := virtioNetHdr{} err := hdr.encode(bufs[item.bufsIndex][offset-virtioNetHdrLen:]) if err != nil { return err } } } } return nil } type groCandidateType uint8 const ( notGROCandidate groCandidateType = iota tcp4GROCandidate tcp6GROCandidate udp4GROCandidate udp6GROCandidate ) func packetIsGROCandidate(b []byte, canUDPGRO bool) groCandidateType { if len(b) < 28 { return notGROCandidate } if b[0]>>4 == 4 { if b[0]&0x0F != 5 { // IPv4 packets w/IP options do not coalesce return notGROCandidate } if b[9] == unix.IPPROTO_TCP && len(b) >= 40 { return tcp4GROCandidate } if b[9] == unix.IPPROTO_UDP && canUDPGRO { return udp4GROCandidate } } else if b[0]>>4 == 6 { if b[6] == unix.IPPROTO_TCP && len(b) >= 60 { return tcp6GROCandidate } if b[6] == unix.IPPROTO_UDP && len(b) >= 48 && canUDPGRO { return udp6GROCandidate } } return notGROCandidate } const ( udphLen = 8 ) // udpGRO evaluates the UDP packet at pktI in bufs for coalescing with // existing packets tracked in table. It returns a groResultNoop when no // action was taken, groResultTableInsert when the evaluated packet was // inserted into table, and groResultCoalesced when the evaluated packet was // coalesced with another packet in table. func udpGRO(bufs [][]byte, offset int, pktI int, table *udpGROTable, isV6 bool) groResult { pkt := bufs[pktI][offset:] if len(pkt) > maxUint16 { // A valid IPv4 or IPv6 packet will never exceed this. return groResultNoop } iphLen := int((pkt[0] & 0x0F) * 4) if isV6 { iphLen = 40 ipv6HPayloadLen := int(binary.BigEndian.Uint16(pkt[4:])) if ipv6HPayloadLen != len(pkt)-iphLen { return groResultNoop } } else { totalLen := int(binary.BigEndian.Uint16(pkt[2:])) if totalLen != len(pkt) { return groResultNoop } } if len(pkt) < iphLen { return groResultNoop } if len(pkt) < iphLen+udphLen { return groResultNoop } if !isV6 { if pkt[6]&ipv4FlagMoreFragments != 0 || pkt[6]<<3 != 0 || pkt[7] != 0 { // no GRO support for fragmented segments for now return groResultNoop } } gsoSize := uint16(len(pkt) - udphLen - iphLen) // not a candidate if payload len is 0 if gsoSize < 1 { return groResultNoop } srcAddrOffset := ipv4SrcAddrOffset addrLen := 4 if isV6 { srcAddrOffset = ipv6SrcAddrOffset addrLen = 16 } items, existing := table.lookupOrInsert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI) if !existing { return groResultTableInsert } // With UDP we only check the last item, otherwise we could reorder packets // for a given flow. We must also always insert a new item, or successfully // coalesce with an existing item, for the same reason. item := items[len(items)-1] can := udpPacketsCanCoalesce(pkt, uint8(iphLen), gsoSize, item, bufs, offset) var pktCSumKnownInvalid bool if can == coalesceAppend { result := coalesceUDPPackets(pkt, &item, bufs, offset, isV6) switch result { case coalesceSuccess: table.updateAt(item, len(items)-1) return groResultCoalesced case coalesceItemInvalidCSum: // If the existing item has an invalid csum we take no action. A new // item will be stored after it, and the existing item will never be // revisited as part of future coalescing candidacy checks. case coalescePktInvalidCSum: // We must insert a new item, but we also mark it as invalid csum // to prevent a repeat checksum validation. pktCSumKnownInvalid = true default: } } // failed to coalesce with any other packets; store the item in the flow table.insert(pkt, srcAddrOffset, srcAddrOffset+addrLen, iphLen, pktI, pktCSumKnownInvalid) return groResultTableInsert } // handleGRO evaluates bufs for GRO, and writes the indices of the resulting // packets into toWrite. toWrite, tcpTable, and udpTable should initially be // empty (but non-nil), and are passed in to save allocs as the caller may reset // and recycle them across vectors of packets. canUDPGRO indicates if UDP GRO is // supported. func handleGRO(bufs [][]byte, offset int, tcpTable *tcpGROTable, udpTable *udpGROTable, canUDPGRO bool, toWrite *[]int) error { for i := range bufs { if offset < virtioNetHdrLen || offset > len(bufs[i])-1 { return errors.New("invalid offset") } var result groResult switch packetIsGROCandidate(bufs[i][offset:], canUDPGRO) { case tcp4GROCandidate: result = tcpGRO(bufs, offset, i, tcpTable, false) case tcp6GROCandidate: result = tcpGRO(bufs, offset, i, tcpTable, true) case udp4GROCandidate: result = udpGRO(bufs, offset, i, udpTable, false) case udp6GROCandidate: result = udpGRO(bufs, offset, i, udpTable, true) } switch result { case groResultNoop: hdr := virtioNetHdr{} err := hdr.encode(bufs[i][offset-virtioNetHdrLen:]) if err != nil { return err } fallthrough case groResultTableInsert: *toWrite = append(*toWrite, i) } } errTCP := applyTCPCoalesceAccounting(bufs, offset, tcpTable) errUDP := applyUDPCoalesceAccounting(bufs, offset, udpTable) return errors.Join(errTCP, errUDP) } // gsoSplit splits packets from in into outBuffs, writing the size of each // element into sizes. It returns the number of buffers populated, and/or an // error. func gsoSplit(in []byte, hdr virtioNetHdr, outBuffs [][]byte, sizes []int, outOffset int, isV6 bool) (int, error) { iphLen := int(hdr.csumStart) srcAddrOffset := ipv6SrcAddrOffset addrLen := 16 if !isV6 { in[10], in[11] = 0, 0 // clear ipv4 header checksum srcAddrOffset = ipv4SrcAddrOffset addrLen = 4 } transportCsumAt := int(hdr.csumStart + hdr.csumOffset) in[transportCsumAt], in[transportCsumAt+1] = 0, 0 // clear tcp/udp checksum var firstTCPSeqNum uint32 var protocol uint8 if hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV4 || hdr.gsoType == unix.VIRTIO_NET_HDR_GSO_TCPV6 { protocol = unix.IPPROTO_TCP firstTCPSeqNum = binary.BigEndian.Uint32(in[hdr.csumStart+4:]) } else { protocol = unix.IPPROTO_UDP } nextSegmentDataAt := int(hdr.hdrLen) i := 0 for ; nextSegmentDataAt < len(in); i++ { if i == len(outBuffs) { return i - 1, ErrTooManySegments } nextSegmentEnd := nextSegmentDataAt + int(hdr.gsoSize) if nextSegmentEnd > len(in) { nextSegmentEnd = len(in) } segmentDataLen := nextSegmentEnd - nextSegmentDataAt totalLen := int(hdr.hdrLen) + segmentDataLen sizes[i] = totalLen out := outBuffs[i][outOffset:] copy(out, in[:iphLen]) if !isV6 { // For IPv4 we are responsible for incrementing the ID field, // updating the total len field, and recalculating the header // checksum. if i > 0 { id := binary.BigEndian.Uint16(out[4:]) id += uint16(i) binary.BigEndian.PutUint16(out[4:], id) } binary.BigEndian.PutUint16(out[2:], uint16(totalLen)) ipv4CSum := ^checksum(out[:iphLen], 0) binary.BigEndian.PutUint16(out[10:], ipv4CSum) } else { // For IPv6 we are responsible for updating the payload length field. binary.BigEndian.PutUint16(out[4:], uint16(totalLen-iphLen)) } // copy transport header copy(out[hdr.csumStart:hdr.hdrLen], in[hdr.csumStart:hdr.hdrLen]) if protocol == unix.IPPROTO_TCP { // set TCP seq and adjust TCP flags tcpSeq := firstTCPSeqNum + uint32(hdr.gsoSize*uint16(i)) binary.BigEndian.PutUint32(out[hdr.csumStart+4:], tcpSeq) if nextSegmentEnd != len(in) { // FIN and PSH should only be set on last segment clearFlags := tcpFlagFIN | tcpFlagPSH out[hdr.csumStart+tcpFlagsOffset] &^= clearFlags } } else { // set UDP header len binary.BigEndian.PutUint16(out[hdr.csumStart+4:], uint16(segmentDataLen)+(hdr.hdrLen-hdr.csumStart)) } // payload copy(out[hdr.hdrLen:], in[nextSegmentDataAt:nextSegmentEnd]) // transport checksum transportHeaderLen := int(hdr.hdrLen - hdr.csumStart) lenForPseudo := uint16(transportHeaderLen + segmentDataLen) transportCSumNoFold := pseudoHeaderChecksumNoFold(protocol, in[srcAddrOffset:srcAddrOffset+addrLen], in[srcAddrOffset+addrLen:srcAddrOffset+addrLen*2], lenForPseudo) transportCSum := ^checksum(out[hdr.csumStart:totalLen], transportCSumNoFold) binary.BigEndian.PutUint16(out[hdr.csumStart+hdr.csumOffset:], transportCSum) nextSegmentDataAt += int(hdr.gsoSize) } return i, nil } func gsoNoneChecksum(in []byte, cSumStart, cSumOffset uint16) error { cSumAt := cSumStart + cSumOffset // The initial value at the checksum offset should be summed with the // checksum we compute. This is typically the pseudo-header checksum. initial := binary.BigEndian.Uint16(in[cSumAt:]) in[cSumAt], in[cSumAt+1] = 0, 0 binary.BigEndian.PutUint16(in[cSumAt:], ^checksum(in[cSumStart:], uint64(initial))) return nil }