It is no longer necessary, as of 454de6f3e64abd2a7bf9201579cd92eea5280996
(device: use channel close to shut down and drain decryption channel).
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
This makes the IpcGet method much faster.
We also refactor the traversal API to use a callback so that we don't
need to allocate at all. Avoiding allocations we do self-masking on
insertion, which in turn means that split intermediate nodes require a
copy of the bits.
benchmark old ns/op new ns/op delta
BenchmarkUAPIGet-16 3243 2659 -18.01%
benchmark old allocs new allocs delta
BenchmarkUAPIGet-16 35 30 -14.29%
benchmark old bytes new bytes delta
BenchmarkUAPIGet-16 1218 737 -39.49%
This benchmark is good, though it's only for a pair of peers, each with
only one allowedips. As this grows, the delta expands considerably.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
There are very few cases, if any, in which a user only wants one of
these levels, so combine it into a single level.
While we're at it, reduce indirection on the loggers by using an empty
function rather than a nil function pointer. It's not like we have
retpolines anyway, and we were always calling through a function with a
branch prior, so this seems like a net gain.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This commit overhauls wireguard-go's logging.
The primary, motivating change is to use a function instead
of a *log.Logger as the basic unit of logging.
Using functions provides a lot more flexibility for
people to bring their own logging system.
It also introduces logging helper methods on Device.
These reduce line noise at the call site.
They also allow for log functions to be nil;
when nil, instead of generating a log line and throwing it away,
we don't bother generating it at all.
This spares allocation and pointless work.
This is a breaking change, although the fix required
of clients is fairly straightforward.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
This is similar to commit e1fa1cc556,
but for the decryption channel.
It is an alternative fix to f9f655567930a4cd78d40fa4ba0d58503335ae6a.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
It's possible for RoutineSequentialReceiver to try to lock an elem after
RoutineDecryption has exited. Before this meant we didn't then unlock
the elem, so the whole program deadlocked.
As well, it looks like the flush code (which is now potentially
unnecessary?) wasn't properly dropping the buffers for the
not-already-dropped case.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
People are actually hitting this condition, so make it uniform. Also,
change a printf into a println, to match the other conventions.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Found by the race detector and existing tests.
To avoid introducing a lock into this hot path,
calculate and cache whether any peers exist.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
The new test introduced in this commit used to deadlock about 1% of the time.
I believe that the deadlock occurs as follows:
* The test completes, calling device.Close.
* device.Close closes device.signals.stop.
* RoutineEncryption stops.
* The deferred function in RoutineEncryption drains device.queue.encryption.
* RoutineEncryption exits.
* A peer's RoutineNonce processes an element queued in peer.queue.nonce.
* RoutineNonce puts that element into the outbound and encryption queues.
* RoutineSequentialSender reads that elements from the outbound queue.
* It waits for that element to get Unlocked by RoutineEncryption.
* RoutineEncryption has already exited, so RoutineSequentialSender blocks forever.
* device.RemoveAllPeers calls peer.Stop on all peers.
* peer.Stop waits for peer.routines.stopping, which blocks forever.
Rather than attempt to add even more ordering to the already complex
centralized shutdown orchestration, this commit moves towards a
data-flow-oriented shutdown.
The device.queue.encryption gets closed when there will be no more writes to it.
All device.queue.encryption readers always read until the channel is closed and then exit.
We thus guarantee that any element that enters the encryption queue also exits it.
This removes the need for central control of the lifetime of RoutineEncryption,
removes the need to drain the encryption queue on shutdown, and simplifies RoutineEncryption.
This commit also fixes a data race. When RoutineSequentialSender
drains its queue on shutdown, it needs to lock the elem before operating on it,
just as the main body does.
The new test in this commit passed 50k iterations with the race detector enabled
and 150k iterations with the race detector disabled, with no failures.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
In each case, the starting waitgroup did nothing but ensure
that the goroutine has launched.
Nothing downstream depends on the order in which goroutines launch,
and if the Go runtime scheduler is so broken that goroutines
don't get launched reasonably promptly, we have much deeper problems.
Given all that, simplify the code.
Passed a race-enabled stress test 25,000 times without failure.
Signed-off-by: Josh Bleecher Snyder <josh@tailscale.com>
Peers are currently removed after Device's goroutines are signaled to stop,
but without waiting for them to actually do so, which is racy.
For example, RoutineHandshake may be in Peer.SendKeepalive
when the corresponding peer is removed, which closes its nonce channel.
This causes a send on a closed channel, as observed in tailscale/tailscale#487.
This patch seems to be the correct synchronizing action:
Peer's goroutines are receivers and handle channel closure gracefully,
so Device's goroutines are the ones that should be fully stopped first.
Signed-Off-By: Dmytro Shynkevych <dmytro@tailscale.com>
The sticky socket code stays in the device package for now,
as it reaches deeply into the peer list.
This is the first step in an effort to split some code out of
the very busy device package.
Signed-off-by: David Crawshaw <crawshaw@tailscale.com>