StdNetBind probes for UDP GSO and GRO support at runtime. UDP GSO is
dependent on checksum offload support on the egress netdev. UDP GSO
will be disabled in the event sendmmsg() returns EIO, which is a strong
signal that the egress netdev does not support checksum offload.
The iperf3 results below demonstrate the effect of this commit between
two Linux computers with i5-12400 CPUs. There is roughly ~13us of round
trip latency between them.
The first result is from commit 052af4a without UDP GSO or GRO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-10.00 sec 9.85 GBytes 8.46 Gbits/sec 1139 3.01 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 9.85 GBytes 8.46 Gbits/sec 1139 sender
[ 5] 0.00-10.04 sec 9.85 GBytes 8.42 Gbits/sec receiver
The second result is with UDP GSO and GRO.
Starting Test: protocol: TCP, 1 streams, 131072 byte blocks
[ ID] Interval Transfer Bitrate Retr Cwnd
[ 5] 0.00-10.00 sec 12.3 GBytes 10.6 Gbits/sec 232 3.15 MBytes
- - - - - - - - - - - - - - - - - - - - - - - - -
Test Complete. Summary Results:
[ ID] Interval Transfer Bitrate Retr
[ 5] 0.00-10.00 sec 12.3 GBytes 10.6 Gbits/sec 232 sender
[ 5] 0.00-10.04 sec 12.3 GBytes 10.6 Gbits/sec receiver
Reviewed-by: Adrian Dewhurst <adrian@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Implement TCP offloading via TSO and GRO for the Linux tun.Device, which
is made possible by virtio extensions in the kernel's TUN driver.
Delete conn.LinuxSocketEndpoint in favor of a collapsed conn.StdNetBind.
conn.StdNetBind makes use of recvmmsg() and sendmmsg() on Linux. All
platforms now fall under conn.StdNetBind, except for Windows, which
remains in conn.WinRingBind, which still needs to be adjusted to handle
multiple packets.
Also refactor sticky sockets support to eventually be applicable on
platforms other than just Linux. However Linux remains the sole platform
that fully implements it for now.
Co-authored-by: James Tucker <james@tailscale.com>
Signed-off-by: James Tucker <james@tailscale.com>
Signed-off-by: Jordan Whited <jordan@tailscale.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
There are more places where we'll need to add it later, when Go 1.18
comes out with support for it in the "net" package. Also, allowedips
still uses slices internally, which might be suboptimal.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
It's never used and we won't have a use for it. Also, move to go-running
stringer, for those without GOPATHs.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
In order to avoid even the flirtation with passing on these dependencies
to ordinary consumers of wireguard-go, this commit makes a new go.mod
that's entirely separate from the root one.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This allows people to initiate connections over WireGuard without any
underlying operating system support.
I'm not crazy about the trash it adds to go.sum, but the code this
actually adds to the binaries seems contained to the gvisor repo.
For the TCP/IP implementation, it uses gvisor. And it borrows some
internals from the Go standard library's resolver in order to bring Dial
and DialContext to tun_net, along with the LookupHost helper function.
This allows for things like HTTP2-over-TLS to work quite well:
package main
import (
"io"
"log"
"net"
"net/http"
"golang.zx2c4.com/wireguard/device"
"golang.zx2c4.com/wireguard/tun"
)
func main() {
tun, tnet, err := tun.CreateNetTUN([]net.IP{net.ParseIP("192.168.4.29")}, []net.IP{net.ParseIP("8.8.8.8"), net.ParseIP("8.8.4.4")}, 1420)
if err != nil {
log.Panic(err)
}
dev := device.NewDevice(tun, &device.Logger{log.Default(), log.Default(), log.Default()})
dev.IpcSet(`private_key=a8dac1d8a70a751f0f699fb14ba1cff7b79cf4fbd8f09f44c6e6a90d0369604f
public_key=25123c5dcd3328ff645e4f2a3fce0d754400d3887a0cb7c56f0267e20fbf3c5b
endpoint=163.172.161.0:12912
allowed_ip=0.0.0.0/0
`)
dev.Up()
client := http.Client{
Transport: &http.Transport{
DialContext: tnet.DialContext,
},
}
resp, err := client.Get("https://www.zx2c4.com/ip")
if err != nil {
log.Panic(err)
}
body, err := io.ReadAll(resp.Body)
if err != nil {
log.Panic(err)
}
log.Println(string(body))
}
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Some users report seeing lines like:
> Routine: receive incoming IPv4 - stopped
Popping up unexpectedly. Let's sleep and try again before failing, and
also log the error, and perhaps we'll eventually understand this
situation better in future versions.
Because we have to distinguish between the socket being closed
explicitly and whatever error this is, we bump the module to require Go
1.16.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This adds the fixes for golang/go#41868 which are needed to build
wireguard without direct syscalls on macOS.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Update the golang.org/x/sys/unix dependency and use the newly introduced
RTMGRP_* consts instead of using the corresponding RTNLGRP_* const to
create a mask.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>