/* * Copyright © 2017-2023 WireGuard LLC. All Rights Reserved. * Copyright 2017 Google Inc. * SPDX-License-Identifier: Apache-2.0 */ package com.wireguard.android.updater; import java.math.BigInteger; import java.security.GeneralSecurityException; import java.security.MessageDigest; import java.util.Arrays; /** * Implementation of Ed25519 signature verification. * *
This implementation is based on the ed25519/ref10 implementation in NaCl.
* *It implements this twisted Edwards curve: * *
* -x^2 + y^2 = 1 + (-121665 / 121666 mod 2^255-19)*x^2*y^2 ** * @see Bernstein D.J., Birkner P., Joye M., Lange * T., Peters C. (2008) Twisted Edwards Curves * @see Hisil H., Wong K.KH., Carter G., Dawson E. * (2008) Twisted Edwards Curves Revisited */ final class Ed25519 { // d = -121665 / 121666 mod 2^255-19 private static final long[] D; // 2d private static final long[] D2; // 2^((p-1)/4) mod p where p = 2^255-19 private static final long[] SQRTM1; /** * Base point for the Edwards twisted curve = (x, 4/5) and its exponentiations. B_TABLE[i][j] = * (j+1)*256^i*B for i in [0, 32) and j in [0, 8). Base point B = B_TABLE[0][0] */ private static final CachedXYT[][] B_TABLE; private static final CachedXYT[] B2; private static final BigInteger P_BI = BigInteger.valueOf(2).pow(255).subtract(BigInteger.valueOf(19)); private static final BigInteger D_BI = BigInteger.valueOf(-121665).multiply(BigInteger.valueOf(121666).modInverse(P_BI)).mod(P_BI); private static final BigInteger D2_BI = BigInteger.valueOf(2).multiply(D_BI).mod(P_BI); private static final BigInteger SQRTM1_BI = BigInteger.valueOf(2).modPow(P_BI.subtract(BigInteger.ONE).divide(BigInteger.valueOf(4)), P_BI); private Ed25519() { } private static class Point { private BigInteger x; private BigInteger y; } private static BigInteger recoverX(BigInteger y) { // x^2 = (y^2 - 1) / (d * y^2 + 1) mod 2^255-19 BigInteger xx = y.pow(2) .subtract(BigInteger.ONE) .multiply(D_BI.multiply(y.pow(2)).add(BigInteger.ONE).modInverse(P_BI)); BigInteger x = xx.modPow(P_BI.add(BigInteger.valueOf(3)).divide(BigInteger.valueOf(8)), P_BI); if (!x.pow(2).subtract(xx).mod(P_BI).equals(BigInteger.ZERO)) { x = x.multiply(SQRTM1_BI).mod(P_BI); } if (x.testBit(0)) { x = P_BI.subtract(x); } return x; } private static Point edwards(Point a, Point b) { Point o = new Point(); BigInteger xxyy = D_BI.multiply(a.x.multiply(b.x).multiply(a.y).multiply(b.y)).mod(P_BI); o.x = (a.x.multiply(b.y).add(b.x.multiply(a.y))) .multiply(BigInteger.ONE.add(xxyy).modInverse(P_BI)) .mod(P_BI); o.y = (a.y.multiply(b.y).add(a.x.multiply(b.x))) .multiply(BigInteger.ONE.subtract(xxyy).modInverse(P_BI)) .mod(P_BI); return o; } private static byte[] toLittleEndian(BigInteger n) { byte[] b = new byte[32]; byte[] nBytes = n.toByteArray(); System.arraycopy(nBytes, 0, b, 32 - nBytes.length, nBytes.length); for (int i = 0; i < b.length / 2; i++) { byte t = b[i]; b[i] = b[b.length - i - 1]; b[b.length - i - 1] = t; } return b; } private static CachedXYT getCachedXYT(Point p) { return new CachedXYT( Field25519.expand(toLittleEndian(p.y.add(p.x).mod(P_BI))), Field25519.expand(toLittleEndian(p.y.subtract(p.x).mod(P_BI))), Field25519.expand(toLittleEndian(D2_BI.multiply(p.x).multiply(p.y).mod(P_BI)))); } static { Point b = new Point(); b.y = BigInteger.valueOf(4).multiply(BigInteger.valueOf(5).modInverse(P_BI)).mod(P_BI); b.x = recoverX(b.y); D = Field25519.expand(toLittleEndian(D_BI)); D2 = Field25519.expand(toLittleEndian(D2_BI)); SQRTM1 = Field25519.expand(toLittleEndian(SQRTM1_BI)); Point bi = b; B_TABLE = new CachedXYT[32][8]; for (int i = 0; i < 32; i++) { Point bij = bi; for (int j = 0; j < 8; j++) { B_TABLE[i][j] = getCachedXYT(bij); bij = edwards(bij, bi); } for (int j = 0; j < 8; j++) { bi = edwards(bi, bi); } } bi = b; Point b2 = edwards(b, b); B2 = new CachedXYT[8]; for (int i = 0; i < 8; i++) { B2[i] = getCachedXYT(bi); bi = edwards(bi, b2); } } private static final int PUBLIC_KEY_LEN = Field25519.FIELD_LEN; private static final int SIGNATURE_LEN = Field25519.FIELD_LEN * 2; /** * Defines field 25519 function based on curve25519-donna C * implementation (mostly identical). * *
Field elements are written as an array of signed, 64-bit limbs (an array of longs), least * significant first. The value of the field element is: * *
* x[0] + 2^26·x[1] + 2^51·x[2] + 2^77·x[3] + 2^102·x[4] + 2^128·x[5] + 2^153·x[6] + 2^179·x[7] + * 2^204·x[8] + 2^230·x[9], ** *
i.e. the limbs are 26, 25, 26, 25, ... bits wide. */ private static final class Field25519 { /** * During Field25519 computation, the mixed radix representation may be in different forms: *
* TODO(quannguyen): *
* On entry: in1, in2 are in reduced-size form. */ static void sum(long[] output, long[] in1, long[] in2) { for (int i = 0; i < LIMB_CNT; i++) { output[i] = in1[i] + in2[i]; } } /** * Sums two numbers: output += in *
* On entry: in is in reduced-size form. */ static void sum(long[] output, long[] in) { sum(output, output, in); } /** * Find the difference of two numbers: output = in1 - in2 * (note the order of the arguments!). *
* On entry: in1, in2 are in reduced-size form. */ static void sub(long[] output, long[] in1, long[] in2) { for (int i = 0; i < LIMB_CNT; i++) { output[i] = in1[i] - in2[i]; } } /** * Find the difference of two numbers: output = in - output * (note the order of the arguments!). *
* On entry: in, output are in reduced-size form. */ static void sub(long[] output, long[] in) { sub(output, in, output); } /** * Multiply a number by a scalar: output = in * scalar */ static void scalarProduct(long[] output, long[] in, long scalar) { for (int i = 0; i < LIMB_CNT; i++) { output[i] = in[i] * scalar; } } /** * Multiply two numbers: out = in2 * in *
* output must be distinct to both inputs. The inputs are reduced coefficient form, * the output is not. *
* out[x] <= 14 * the largest product of the input limbs. */ static void product(long[] out, long[] in2, long[] in) { out[0] = in2[0] * in[0]; out[1] = in2[0] * in[1] + in2[1] * in[0]; out[2] = 2 * in2[1] * in[1] + in2[0] * in[2] + in2[2] * in[0]; out[3] = in2[1] * in[2] + in2[2] * in[1] + in2[0] * in[3] + in2[3] * in[0]; out[4] = in2[2] * in[2] + 2 * (in2[1] * in[3] + in2[3] * in[1]) + in2[0] * in[4] + in2[4] * in[0]; out[5] = in2[2] * in[3] + in2[3] * in[2] + in2[1] * in[4] + in2[4] * in[1] + in2[0] * in[5] + in2[5] * in[0]; out[6] = 2 * (in2[3] * in[3] + in2[1] * in[5] + in2[5] * in[1]) + in2[2] * in[4] + in2[4] * in[2] + in2[0] * in[6] + in2[6] * in[0]; out[7] = in2[3] * in[4] + in2[4] * in[3] + in2[2] * in[5] + in2[5] * in[2] + in2[1] * in[6] + in2[6] * in[1] + in2[0] * in[7] + in2[7] * in[0]; out[8] = in2[4] * in[4] + 2 * (in2[3] * in[5] + in2[5] * in[3] + in2[1] * in[7] + in2[7] * in[1]) + in2[2] * in[6] + in2[6] * in[2] + in2[0] * in[8] + in2[8] * in[0]; out[9] = in2[4] * in[5] + in2[5] * in[4] + in2[3] * in[6] + in2[6] * in[3] + in2[2] * in[7] + in2[7] * in[2] + in2[1] * in[8] + in2[8] * in[1] + in2[0] * in[9] + in2[9] * in[0]; out[10] = 2 * (in2[5] * in[5] + in2[3] * in[7] + in2[7] * in[3] + in2[1] * in[9] + in2[9] * in[1]) + in2[4] * in[6] + in2[6] * in[4] + in2[2] * in[8] + in2[8] * in[2]; out[11] = in2[5] * in[6] + in2[6] * in[5] + in2[4] * in[7] + in2[7] * in[4] + in2[3] * in[8] + in2[8] * in[3] + in2[2] * in[9] + in2[9] * in[2]; out[12] = in2[6] * in[6] + 2 * (in2[5] * in[7] + in2[7] * in[5] + in2[3] * in[9] + in2[9] * in[3]) + in2[4] * in[8] + in2[8] * in[4]; out[13] = in2[6] * in[7] + in2[7] * in[6] + in2[5] * in[8] + in2[8] * in[5] + in2[4] * in[9] + in2[9] * in[4]; out[14] = 2 * (in2[7] * in[7] + in2[5] * in[9] + in2[9] * in[5]) + in2[6] * in[8] + in2[8] * in[6]; out[15] = in2[7] * in[8] + in2[8] * in[7] + in2[6] * in[9] + in2[9] * in[6]; out[16] = in2[8] * in[8] + 2 * (in2[7] * in[9] + in2[9] * in[7]); out[17] = in2[8] * in[9] + in2[9] * in[8]; out[18] = 2 * in2[9] * in[9]; } /** * Reduce a field element by calling reduceSizeByModularReduction and reduceCoefficients. * * @param input An input array of any length. If the array has 19 elements, it will be used as * temporary buffer and its contents changed. * @param output An output array of size LIMB_CNT. After the call |output[i]| < 2^26 will hold. */ static void reduce(long[] input, long[] output) { long[] tmp; if (input.length == 19) { tmp = input; } else { tmp = new long[19]; System.arraycopy(input, 0, tmp, 0, input.length); } reduceSizeByModularReduction(tmp); reduceCoefficients(tmp); System.arraycopy(tmp, 0, output, 0, LIMB_CNT); } /** * Reduce a long form to a reduced-size form by taking the input mod 2^255 - 19. *
* On entry: |output[i]| < 14*2^54 * On exit: |output[0..8]| < 280*2^54 */ static void reduceSizeByModularReduction(long[] output) { // The coefficients x[10], x[11],..., x[18] are eliminated by reduction modulo 2^255 - 19. // For example, the coefficient x[18] is multiplied by 19 and added to the coefficient x[8]. // // Each of these shifts and adds ends up multiplying the value by 19. // // For output[0..8], the absolute entry value is < 14*2^54 and we add, at most, 19*14*2^54 thus, // on exit, |output[0..8]| < 280*2^54. output[8] += output[18] << 4; output[8] += output[18] << 1; output[8] += output[18]; output[7] += output[17] << 4; output[7] += output[17] << 1; output[7] += output[17]; output[6] += output[16] << 4; output[6] += output[16] << 1; output[6] += output[16]; output[5] += output[15] << 4; output[5] += output[15] << 1; output[5] += output[15]; output[4] += output[14] << 4; output[4] += output[14] << 1; output[4] += output[14]; output[3] += output[13] << 4; output[3] += output[13] << 1; output[3] += output[13]; output[2] += output[12] << 4; output[2] += output[12] << 1; output[2] += output[12]; output[1] += output[11] << 4; output[1] += output[11] << 1; output[1] += output[11]; output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; } /** * Reduce all coefficients of the short form input so that |x| < 2^26. *
* On entry: |output[i]| < 280*2^54 */ static void reduceCoefficients(long[] output) { output[10] = 0; for (int i = 0; i < LIMB_CNT; i += 2) { long over = output[i] / TWO_TO_26; // The entry condition (that |output[i]| < 280*2^54) means that over is, at most, 280*2^28 in // the first iteration of this loop. This is added to the next limb and we can approximate the // resulting bound of that limb by 281*2^54. output[i] -= over << 26; output[i + 1] += over; // For the first iteration, |output[i+1]| < 281*2^54, thus |over| < 281*2^29. When this is // added to the next limb, the resulting bound can be approximated as 281*2^54. // // For subsequent iterations of the loop, 281*2^54 remains a conservative bound and no // overflow occurs. over = output[i + 1] / TWO_TO_25; output[i + 1] -= over << 25; output[i + 2] += over; } // Now |output[10]| < 281*2^29 and all other coefficients are reduced. output[0] += output[10] << 4; output[0] += output[10] << 1; output[0] += output[10]; output[10] = 0; // Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 so |over| will be no more // than 2^16. long over = output[0] / TWO_TO_26; output[0] -= over << 26; output[1] += over; // Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The bound on // |output[1]| is sufficient to meet our needs. } /** * A helpful wrapper around {@ref Field25519#product}: output = in * in2. *
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27. *
* The output is reduced degree (indeed, one need only provide storage for 10 limbs) and * |output[i]| < 2^26. */ static void mult(long[] output, long[] in, long[] in2) { long[] t = new long[19]; product(t, in, in2); // |t[i]| < 2^26 reduce(t, output); } /** * Square a number: out = in**2 *
* output must be distinct from the input. The inputs are reduced coefficient form, the output is * not. *
* out[x] <= 14 * the largest product of the input limbs. */ private static void squareInner(long[] out, long[] in) { out[0] = in[0] * in[0]; out[1] = 2 * in[0] * in[1]; out[2] = 2 * (in[1] * in[1] + in[0] * in[2]); out[3] = 2 * (in[1] * in[2] + in[0] * in[3]); out[4] = in[2] * in[2] + 4 * in[1] * in[3] + 2 * in[0] * in[4]; out[5] = 2 * (in[2] * in[3] + in[1] * in[4] + in[0] * in[5]); out[6] = 2 * (in[3] * in[3] + in[2] * in[4] + in[0] * in[6] + 2 * in[1] * in[5]); out[7] = 2 * (in[3] * in[4] + in[2] * in[5] + in[1] * in[6] + in[0] * in[7]); out[8] = in[4] * in[4] + 2 * (in[2] * in[6] + in[0] * in[8] + 2 * (in[1] * in[7] + in[3] * in[5])); out[9] = 2 * (in[4] * in[5] + in[3] * in[6] + in[2] * in[7] + in[1] * in[8] + in[0] * in[9]); out[10] = 2 * (in[5] * in[5] + in[4] * in[6] + in[2] * in[8] + 2 * (in[3] * in[7] + in[1] * in[9])); out[11] = 2 * (in[5] * in[6] + in[4] * in[7] + in[3] * in[8] + in[2] * in[9]); out[12] = in[6] * in[6] + 2 * (in[4] * in[8] + 2 * (in[5] * in[7] + in[3] * in[9])); out[13] = 2 * (in[6] * in[7] + in[5] * in[8] + in[4] * in[9]); out[14] = 2 * (in[7] * in[7] + in[6] * in[8] + 2 * in[5] * in[9]); out[15] = 2 * (in[7] * in[8] + in[6] * in[9]); out[16] = in[8] * in[8] + 4 * in[7] * in[9]; out[17] = 2 * in[8] * in[9]; out[18] = 2 * in[9] * in[9]; } /** * Returns in^2. *
* On entry: The |in| argument is in reduced coefficients form and |in[i]| < 2^27. *
* On exit: The |output| argument is in reduced coefficients form (indeed, one need only provide * storage for 10 limbs) and |out[i]| < 2^26. */ static void square(long[] output, long[] in) { long[] t = new long[19]; squareInner(t, in); // |t[i]| < 14*2^54 because the largest product of two limbs will be < 2^(27+27) and SquareInner // adds together, at most, 14 of those products. reduce(t, output); } /** * Takes a little-endian, 32-byte number and expands it into mixed radix form. */ static long[] expand(byte[] input) { long[] output = new long[LIMB_CNT]; for (int i = 0; i < LIMB_CNT; i++) { output[i] = ((((long) (input[EXPAND_START[i]] & 0xff)) | ((long) (input[EXPAND_START[i] + 1] & 0xff)) << 8 | ((long) (input[EXPAND_START[i] + 2] & 0xff)) << 16 | ((long) (input[EXPAND_START[i] + 3] & 0xff)) << 24) >> EXPAND_SHIFT[i]) & MASK[i & 1]; } return output; } /** * Takes a fully reduced mixed radix form number and contract it into a little-endian, 32-byte * array. *
* On entry: |input_limbs[i]| < 2^26 */ @SuppressWarnings("NarrowingCompoundAssignment") static byte[] contract(long[] inputLimbs) { long[] input = Arrays.copyOf(inputLimbs, LIMB_CNT); for (int j = 0; j < 2; j++) { for (int i = 0; i < 9; i++) { // This calculation is a time-invariant way to make input[i] non-negative by borrowing // from the next-larger limb. int carry = -(int) ((input[i] & (input[i] >> 31)) >> SHIFT[i & 1]); input[i] = input[i] + (carry << SHIFT[i & 1]); input[i + 1] -= carry; } // There's no greater limb for input[9] to borrow from, but we can multiply by 19 and borrow // from input[0], which is valid mod 2^255-19. { int carry = -(int) ((input[9] & (input[9] >> 31)) >> 25); input[9] += (carry << 25); input[0] -= (carry * 19); } // After the first iteration, input[1..9] are non-negative and fit within 25 or 26 bits, // depending on position. However, input[0] may be negative. } // The first borrow-propagation pass above ended with every limb except (possibly) input[0] // non-negative. // // If input[0] was negative after the first pass, then it was because of a carry from input[9]. // On entry, input[9] < 2^26 so the carry was, at most, one, since (2**26-1) >> 25 = 1. Thus // input[0] >= -19. // // In the second pass, each limb is decreased by at most one. Thus the second borrow-propagation // pass could only have wrapped around to decrease input[0] again if the first pass left // input[0] negative *and* input[1] through input[9] were all zero. In that case, input[1] is // now 2^25 - 1, and this last borrow-propagation step will leave input[1] non-negative. { int carry = -(int) ((input[0] & (input[0] >> 31)) >> 26); input[0] += (carry << 26); input[1] -= carry; } // All input[i] are now non-negative. However, there might be values between 2^25 and 2^26 in a // limb which is, nominally, 25 bits wide. for (int j = 0; j < 2; j++) { for (int i = 0; i < 9; i++) { int carry = (int) (input[i] >> SHIFT[i & 1]); input[i] &= MASK[i & 1]; input[i + 1] += carry; } } { int carry = (int) (input[9] >> 25); input[9] &= 0x1ffffff; input[0] += 19 * carry; } // If the first carry-chain pass, just above, ended up with a carry from input[9], and that // caused input[0] to be out-of-bounds, then input[0] was < 2^26 + 2*19, because the carry was, // at most, two. // // If the second pass carried from input[9] again then input[0] is < 2*19 and the input[9] -> // input[0] carry didn't push input[0] out of bounds. // It still remains the case that input might be between 2^255-19 and 2^255. In this case, // input[1..9] must take their maximum value and input[0] must be >= (2^255-19) & 0x3ffffff, // which is 0x3ffffed. int mask = gte((int) input[0], 0x3ffffed); for (int i = 1; i < LIMB_CNT; i++) { mask &= eq((int) input[i], MASK[i & 1]); } // mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus this conditionally // subtracts 2^255-19. input[0] -= mask & 0x3ffffed; input[1] -= mask & 0x1ffffff; for (int i = 2; i < LIMB_CNT; i += 2) { input[i] -= mask & 0x3ffffff; input[i + 1] -= mask & 0x1ffffff; } for (int i = 0; i < LIMB_CNT; i++) { input[i] <<= EXPAND_SHIFT[i]; } byte[] output = new byte[FIELD_LEN]; for (int i = 0; i < LIMB_CNT; i++) { output[EXPAND_START[i]] |= input[i] & 0xff; output[EXPAND_START[i] + 1] |= (input[i] >> 8) & 0xff; output[EXPAND_START[i] + 2] |= (input[i] >> 16) & 0xff; output[EXPAND_START[i] + 3] |= (input[i] >> 24) & 0xff; } return output; } /** * Computes inverse of z = z(2^255 - 21) *
* Shamelessly copied from agl's code which was shamelessly copied from djb's code. Only the * comment format and the variable namings are different from those. */ static void inverse(long[] out, long[] z) { long[] z2 = new long[Field25519.LIMB_CNT]; long[] z9 = new long[Field25519.LIMB_CNT]; long[] z11 = new long[Field25519.LIMB_CNT]; long[] z2To5Minus1 = new long[Field25519.LIMB_CNT]; long[] z2To10Minus1 = new long[Field25519.LIMB_CNT]; long[] z2To20Minus1 = new long[Field25519.LIMB_CNT]; long[] z2To50Minus1 = new long[Field25519.LIMB_CNT]; long[] z2To100Minus1 = new long[Field25519.LIMB_CNT]; long[] t0 = new long[Field25519.LIMB_CNT]; long[] t1 = new long[Field25519.LIMB_CNT]; square(z2, z); // 2 square(t1, z2); // 4 square(t0, t1); // 8 mult(z9, t0, z); // 9 mult(z11, z9, z2); // 11 square(t0, z11); // 22 mult(z2To5Minus1, t0, z9); // 2^5 - 2^0 = 31 square(t0, z2To5Minus1); // 2^6 - 2^1 square(t1, t0); // 2^7 - 2^2 square(t0, t1); // 2^8 - 2^3 square(t1, t0); // 2^9 - 2^4 square(t0, t1); // 2^10 - 2^5 mult(z2To10Minus1, t0, z2To5Minus1); // 2^10 - 2^0 square(t0, z2To10Minus1); // 2^11 - 2^1 square(t1, t0); // 2^12 - 2^2 for (int i = 2; i < 10; i += 2) { // 2^20 - 2^10 square(t0, t1); square(t1, t0); } mult(z2To20Minus1, t1, z2To10Minus1); // 2^20 - 2^0 square(t0, z2To20Minus1); // 2^21 - 2^1 square(t1, t0); // 2^22 - 2^2 for (int i = 2; i < 20; i += 2) { // 2^40 - 2^20 square(t0, t1); square(t1, t0); } mult(t0, t1, z2To20Minus1); // 2^40 - 2^0 square(t1, t0); // 2^41 - 2^1 square(t0, t1); // 2^42 - 2^2 for (int i = 2; i < 10; i += 2) { // 2^50 - 2^10 square(t1, t0); square(t0, t1); } mult(z2To50Minus1, t0, z2To10Minus1); // 2^50 - 2^0 square(t0, z2To50Minus1); // 2^51 - 2^1 square(t1, t0); // 2^52 - 2^2 for (int i = 2; i < 50; i += 2) { // 2^100 - 2^50 square(t0, t1); square(t1, t0); } mult(z2To100Minus1, t1, z2To50Minus1); // 2^100 - 2^0 square(t1, z2To100Minus1); // 2^101 - 2^1 square(t0, t1); // 2^102 - 2^2 for (int i = 2; i < 100; i += 2) { // 2^200 - 2^100 square(t1, t0); square(t0, t1); } mult(t1, t0, z2To100Minus1); // 2^200 - 2^0 square(t0, t1); // 2^201 - 2^1 square(t1, t0); // 2^202 - 2^2 for (int i = 2; i < 50; i += 2) { // 2^250 - 2^50 square(t0, t1); square(t1, t0); } mult(t0, t1, z2To50Minus1); // 2^250 - 2^0 square(t1, t0); // 2^251 - 2^1 square(t0, t1); // 2^252 - 2^2 square(t1, t0); // 2^253 - 2^3 square(t0, t1); // 2^254 - 2^4 square(t1, t0); // 2^255 - 2^5 mult(out, t1, z11); // 2^255 - 21 } /** * Returns 0xffffffff iff a == b and zero otherwise. */ private static int eq(int a, int b) { a = ~(a ^ b); a &= a << 16; a &= a << 8; a &= a << 4; a &= a << 2; a &= a << 1; return a >> 31; } /** * returns 0xffffffff if a >= b and zero otherwise, where a and b are both non-negative. */ private static int gte(int a, int b) { a -= b; // a >= 0 iff a >= b. return ~(a >> 31); } } // (x = 0, y = 1) point private static final CachedXYT CACHED_NEUTRAL = new CachedXYT( new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}); private static final PartialXYZT NEUTRAL = new PartialXYZT( new XYZ(new long[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}), new long[]{1, 0, 0, 0, 0, 0, 0, 0, 0, 0}); /** * Projective point representation (X:Y:Z) satisfying x = X/Z, y = Y/Z *
* Note that this is referred as ge_p2 in ref10 impl. * Also note that x = X, y = Y and z = Z below following Java coding style. *
* See * Koyama K., Tsuruoka Y. (1993) Speeding up Elliptic Cryptosystems by Using a Signed Binary * Window Method. *
* https://hyperelliptic.org/EFD/g1p/auto-twisted-projective.html */ private static class XYZ { final long[] x; final long[] y; final long[] z; XYZ() { this(new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT]); } XYZ(long[] x, long[] y, long[] z) { this.x = x; this.y = y; this.z = z; } XYZ(XYZ xyz) { x = Arrays.copyOf(xyz.x, Field25519.LIMB_CNT); y = Arrays.copyOf(xyz.y, Field25519.LIMB_CNT); z = Arrays.copyOf(xyz.z, Field25519.LIMB_CNT); } XYZ(PartialXYZT partialXYZT) { this(); fromPartialXYZT(this, partialXYZT); } /** * ge_p1p1_to_p2.c */ static XYZ fromPartialXYZT(XYZ out, PartialXYZT in) { Field25519.mult(out.x, in.xyz.x, in.t); Field25519.mult(out.y, in.xyz.y, in.xyz.z); Field25519.mult(out.z, in.xyz.z, in.t); return out; } /** * Encodes this point to bytes. */ byte[] toBytes() { long[] recip = new long[Field25519.LIMB_CNT]; long[] x = new long[Field25519.LIMB_CNT]; long[] y = new long[Field25519.LIMB_CNT]; Field25519.inverse(recip, z); Field25519.mult(x, this.x, recip); Field25519.mult(y, this.y, recip); byte[] s = Field25519.contract(y); s[31] = (byte) (s[31] ^ (getLsb(x) << 7)); return s; } /** * Best effort fix-timing array comparison. * * @return true if two arrays are equal. */ private static boolean bytesEqual(final byte[] x, final byte[] y) { if (x == null || y == null) { return false; } if (x.length != y.length) { return false; } int res = 0; for (int i = 0; i < x.length; i++) { res |= x[i] ^ y[i]; } return res == 0; } /** * Checks that the point is on curve */ boolean isOnCurve() { long[] x2 = new long[Field25519.LIMB_CNT]; Field25519.square(x2, x); long[] y2 = new long[Field25519.LIMB_CNT]; Field25519.square(y2, y); long[] z2 = new long[Field25519.LIMB_CNT]; Field25519.square(z2, z); long[] z4 = new long[Field25519.LIMB_CNT]; Field25519.square(z4, z2); long[] lhs = new long[Field25519.LIMB_CNT]; // lhs = y^2 - x^2 Field25519.sub(lhs, y2, x2); // lhs = z^2 * (y2 - x2) Field25519.mult(lhs, lhs, z2); long[] rhs = new long[Field25519.LIMB_CNT]; // rhs = x^2 * y^2 Field25519.mult(rhs, x2, y2); // rhs = D * x^2 * y^2 Field25519.mult(rhs, rhs, D); // rhs = z^4 + D * x^2 * y^2 Field25519.sum(rhs, z4); // Field25519.mult reduces its output, but Field25519.sum does not, so we have to manually // reduce it here. Field25519.reduce(rhs, rhs); // z^2 (y^2 - x^2) == z^4 + D * x^2 * y^2 return bytesEqual(Field25519.contract(lhs), Field25519.contract(rhs)); } } /** * Represents extended projective point representation (X:Y:Z:T) satisfying x = X/Z, y = Y/Z, * XY = ZT *
* Note that this is referred as ge_p3 in ref10 impl. * Also note that t = T below following Java coding style. *
* See * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. *
* https://hyperelliptic.org/EFD/g1p/auto-twisted-extended.html */ private static class XYZT { final XYZ xyz; final long[] t; XYZT() { this(new XYZ(), new long[Field25519.LIMB_CNT]); } XYZT(XYZ xyz, long[] t) { this.xyz = xyz; this.t = t; } XYZT(PartialXYZT partialXYZT) { this(); fromPartialXYZT(this, partialXYZT); } /** * ge_p1p1_to_p2.c */ private static XYZT fromPartialXYZT(XYZT out, PartialXYZT in) { Field25519.mult(out.xyz.x, in.xyz.x, in.t); Field25519.mult(out.xyz.y, in.xyz.y, in.xyz.z); Field25519.mult(out.xyz.z, in.xyz.z, in.t); Field25519.mult(out.t, in.xyz.x, in.xyz.y); return out; } /** * Decodes {@code s} into an extented projective point. * See Section 5.1.3 Decoding in https://tools.ietf.org/html/rfc8032#section-5.1.3 */ private static XYZT fromBytesNegateVarTime(byte[] s) throws GeneralSecurityException { long[] x = new long[Field25519.LIMB_CNT]; long[] y = Field25519.expand(s); long[] z = new long[Field25519.LIMB_CNT]; z[0] = 1; long[] t = new long[Field25519.LIMB_CNT]; long[] u = new long[Field25519.LIMB_CNT]; long[] v = new long[Field25519.LIMB_CNT]; long[] vxx = new long[Field25519.LIMB_CNT]; long[] check = new long[Field25519.LIMB_CNT]; Field25519.square(u, y); Field25519.mult(v, u, D); Field25519.sub(u, u, z); // u = y^2 - 1 Field25519.sum(v, v, z); // v = dy^2 + 1 long[] v3 = new long[Field25519.LIMB_CNT]; Field25519.square(v3, v); Field25519.mult(v3, v3, v); // v3 = v^3 Field25519.square(x, v3); Field25519.mult(x, x, v); Field25519.mult(x, x, u); // x = uv^7 pow2252m3(x, x); // x = (uv^7)^((q-5)/8) Field25519.mult(x, x, v3); Field25519.mult(x, x, u); // x = uv^3(uv^7)^((q-5)/8) Field25519.square(vxx, x); Field25519.mult(vxx, vxx, v); Field25519.sub(check, vxx, u); // vx^2-u if (isNonZeroVarTime(check)) { Field25519.sum(check, vxx, u); // vx^2+u if (isNonZeroVarTime(check)) { throw new GeneralSecurityException("Cannot convert given bytes to extended projective " + "coordinates. No square root exists for modulo 2^255-19"); } Field25519.mult(x, x, SQRTM1); } if (!isNonZeroVarTime(x) && (s[31] & 0xff) >> 7 != 0) { throw new GeneralSecurityException("Cannot convert given bytes to extended projective " + "coordinates. Computed x is zero and encoded x's least significant bit is not zero"); } if (getLsb(x) == ((s[31] & 0xff) >> 7)) { neg(x, x); } Field25519.mult(t, x, y); return new XYZT(new XYZ(x, y, z), t); } } /** * Partial projective point representation ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T *
* Note that this is referred as complete form in the original ref10 impl (ge_p1p1). * Also note that t = T below following Java coding style. *
* Although this has the same types as XYZT, it is redefined to have its own type so that it is * readable and 1:1 corresponds to ref10 impl. *
* Can be converted to XYZT as follows: * X1 = X * T = x * Z * T = x * Z1 * Y1 = Y * Z = y * T * Z = y * Z1 * Z1 = Z * T = Z * T * T1 = X * Y = x * Z * y * T = x * y * Z1 = X1Y1 / Z1 */ private static class PartialXYZT { final XYZ xyz; final long[] t; PartialXYZT() { this(new XYZ(), new long[Field25519.LIMB_CNT]); } PartialXYZT(XYZ xyz, long[] t) { this.xyz = xyz; this.t = t; } PartialXYZT(PartialXYZT other) { xyz = new XYZ(other.xyz); t = Arrays.copyOf(other.t, Field25519.LIMB_CNT); } } /** * Corresponds to the caching mentioned in the last paragraph of Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. * with Z = 1. */ private static class CachedXYT { final long[] yPlusX; final long[] yMinusX; final long[] t2d; /** * Creates a cached XYZT with Z = 1 * * @param yPlusX y + x * @param yMinusX y - x * @param t2d 2d * xy */ CachedXYT(long[] yPlusX, long[] yMinusX, long[] t2d) { this.yPlusX = yPlusX; this.yMinusX = yMinusX; this.t2d = t2d; } CachedXYT(CachedXYT other) { yPlusX = Arrays.copyOf(other.yPlusX, Field25519.LIMB_CNT); yMinusX = Arrays.copyOf(other.yMinusX, Field25519.LIMB_CNT); t2d = Arrays.copyOf(other.t2d, Field25519.LIMB_CNT); } // z is one implicitly, so this just copies {@code in} to {@code output}. void multByZ(long[] output, long[] in) { System.arraycopy(in, 0, output, 0, Field25519.LIMB_CNT); } /** * If icopy is 1, copies {@code other} into this point. Time invariant wrt to icopy value. */ void copyConditional(CachedXYT other, int icopy) { copyConditional(yPlusX, other.yPlusX, icopy); copyConditional(yMinusX, other.yMinusX, icopy); copyConditional(t2d, other.t2d, icopy); } /** * Conditionally copies a reduced-form limb arrays {@code b} into {@code a} if {@code icopy} is 1, * but leave {@code a} unchanged if 'iswap' is 0. Runs in data-invariant time to avoid * side-channel attacks. * *
NOTE that this function requires that {@code icopy} be 1 or 0; other values give wrong * results. Also, the two limb arrays must be in reduced-coefficient, reduced-degree form: the * values in a[10..19] or b[10..19] aren't swapped, and all all values in a[0..9],b[0..9] must * have magnitude less than Integer.MAX_VALUE. */ static void copyConditional(long[] a, long[] b, int icopy) { int copy = -icopy; for (int i = 0; i < Field25519.LIMB_CNT; i++) { int x = copy & (((int) a[i]) ^ ((int) b[i])); a[i] = ((int) a[i]) ^ x; } } } private static class CachedXYZT extends CachedXYT { private final long[] z; CachedXYZT() { this(new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT], new long[Field25519.LIMB_CNT]); } /** * ge_p3_to_cached.c */ CachedXYZT(XYZT xyzt) { this(); Field25519.sum(yPlusX, xyzt.xyz.y, xyzt.xyz.x); Field25519.sub(yMinusX, xyzt.xyz.y, xyzt.xyz.x); System.arraycopy(xyzt.xyz.z, 0, z, 0, Field25519.LIMB_CNT); Field25519.mult(t2d, xyzt.t, D2); } /** * Creates a cached XYZT * * @param yPlusX Y + X * @param yMinusX Y - X * @param z Z * @param t2d 2d * (XY/Z) */ CachedXYZT(long[] yPlusX, long[] yMinusX, long[] z, long[] t2d) { super(yPlusX, yMinusX, t2d); this.z = z; } @Override public void multByZ(long[] output, long[] in) { Field25519.mult(output, in, z); } } /** * Addition defined in Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. *
* Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT. * * @param extended extended projective point input * @param cached cached projective point input */ private static void add(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { long[] t = new long[Field25519.LIMB_CNT]; // Y1 + X1 Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); // Y1 - X1 Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); // A = (Y1 - X1) * (Y2 - X2) Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yMinusX); // B = (Y1 + X1) * (Y2 + X2) Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yPlusX); // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) Field25519.mult(partialXYZT.t, extended.t, cached.t2d); // Z1 * Z2 cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); // D = 2 * Z1 * Z2 Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); // X3 = B - A Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); // Y3 = B + A Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); // Z3 = D + C Field25519.sum(partialXYZT.xyz.z, t, partialXYZT.t); // T3 = D - C Field25519.sub(partialXYZT.t, t, partialXYZT.t); } /** * Based on the addition defined in Section 3.1 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. *
* Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT. * * @param extended extended projective point input * @param cached cached projective point input */ private static void sub(PartialXYZT partialXYZT, XYZT extended, CachedXYT cached) { long[] t = new long[Field25519.LIMB_CNT]; // Y1 + X1 Field25519.sum(partialXYZT.xyz.x, extended.xyz.y, extended.xyz.x); // Y1 - X1 Field25519.sub(partialXYZT.xyz.y, extended.xyz.y, extended.xyz.x); // A = (Y1 - X1) * (Y2 + X2) Field25519.mult(partialXYZT.xyz.y, partialXYZT.xyz.y, cached.yPlusX); // B = (Y1 + X1) * (Y2 - X2) Field25519.mult(partialXYZT.xyz.z, partialXYZT.xyz.x, cached.yMinusX); // C = T1 * 2d * T2 = 2d * T1 * T2 (2d is written as k in the paper) Field25519.mult(partialXYZT.t, extended.t, cached.t2d); // Z1 * Z2 cached.multByZ(partialXYZT.xyz.x, extended.xyz.z); // D = 2 * Z1 * Z2 Field25519.sum(t, partialXYZT.xyz.x, partialXYZT.xyz.x); // X3 = B - A Field25519.sub(partialXYZT.xyz.x, partialXYZT.xyz.z, partialXYZT.xyz.y); // Y3 = B + A Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.y); // Z3 = D - C Field25519.sub(partialXYZT.xyz.z, t, partialXYZT.t); // T3 = D + C Field25519.sum(partialXYZT.t, t, partialXYZT.t); } /** * Doubles {@code p} and puts the result into this PartialXYZT. *
* This is based on the addition defined in formula 7 in Section 3.3 of * Hisil H., Wong K.KH., Carter G., Dawson E. (2008) Twisted Edwards Curves Revisited. *
* Please note that this is a partial of the operation listed there leaving out the final * conversion from PartialXYZT to XYZT and also this fixes a typo in calculation of Y3 and T3 in * the paper, H should be replaced with A+B. */ private static void doubleXYZ(PartialXYZT partialXYZT, XYZ p) { long[] t0 = new long[Field25519.LIMB_CNT]; // XX = X1^2 Field25519.square(partialXYZT.xyz.x, p.x); // YY = Y1^2 Field25519.square(partialXYZT.xyz.z, p.y); // B' = Z1^2 Field25519.square(partialXYZT.t, p.z); // B = 2 * B' Field25519.sum(partialXYZT.t, partialXYZT.t, partialXYZT.t); // A = X1 + Y1 Field25519.sum(partialXYZT.xyz.y, p.x, p.y); // AA = A^2 Field25519.square(t0, partialXYZT.xyz.y); // Y3 = YY + XX Field25519.sum(partialXYZT.xyz.y, partialXYZT.xyz.z, partialXYZT.xyz.x); // Z3 = YY - XX Field25519.sub(partialXYZT.xyz.z, partialXYZT.xyz.z, partialXYZT.xyz.x); // X3 = AA - Y3 Field25519.sub(partialXYZT.xyz.x, t0, partialXYZT.xyz.y); // T3 = B - Z3 Field25519.sub(partialXYZT.t, partialXYZT.t, partialXYZT.xyz.z); } /** * Doubles {@code p} and puts the result into this PartialXYZT. */ private static void doubleXYZT(PartialXYZT partialXYZT, XYZT p) { doubleXYZ(partialXYZT, p.xyz); } /** * Compares two byte values in constant time. */ private static int eq(int a, int b) { int r = ~(a ^ b) & 0xff; r &= r << 4; r &= r << 2; r &= r << 1; return (r >> 7) & 1; } /** * This is a constant time operation where point b*B*256^pos is stored in {@code t}. * When b is 0, t remains the same (i.e., neutral point). *
* Although B_TABLE[32][8] (B_TABLE[i][j] = (j+1)*B*256^i) has j values in [0, 7], the select * method negates the corresponding point if b is negative (which is straight forward in elliptic * curves by just negating y coordinate). Therefore we can get multiples of B with the half of * memory requirements. * * @param t neutral element (i.e., point 0), also serves as output. * @param pos in B[pos][j] = (j+1)*B*256^pos * @param b value in [-8, 8] range. */ private static void select(CachedXYT t, int pos, byte b) { int bnegative = (b & 0xff) >> 7; int babs = b - (((-bnegative) & b) << 1); t.copyConditional(B_TABLE[pos][0], eq(babs, 1)); t.copyConditional(B_TABLE[pos][1], eq(babs, 2)); t.copyConditional(B_TABLE[pos][2], eq(babs, 3)); t.copyConditional(B_TABLE[pos][3], eq(babs, 4)); t.copyConditional(B_TABLE[pos][4], eq(babs, 5)); t.copyConditional(B_TABLE[pos][5], eq(babs, 6)); t.copyConditional(B_TABLE[pos][6], eq(babs, 7)); t.copyConditional(B_TABLE[pos][7], eq(babs, 8)); long[] yPlusX = Arrays.copyOf(t.yMinusX, Field25519.LIMB_CNT); long[] yMinusX = Arrays.copyOf(t.yPlusX, Field25519.LIMB_CNT); long[] t2d = Arrays.copyOf(t.t2d, Field25519.LIMB_CNT); neg(t2d, t2d); CachedXYT minust = new CachedXYT(yPlusX, yMinusX, t2d); t.copyConditional(minust, bnegative); } /** * Computes {@code a}*B * where a = a[0]+256*a[1]+...+256^31 a[31] and * B is the Ed25519 base point (x,4/5) with x positive. *
* Preconditions: * a[31] <= 127 * * @throws IllegalStateException iff there is arithmetic error. */ @SuppressWarnings("NarrowingCompoundAssignment") private static XYZ scalarMultWithBase(byte[] a) { byte[] e = new byte[2 * Field25519.FIELD_LEN]; for (int i = 0; i < Field25519.FIELD_LEN; i++) { e[2 * i + 0] = (byte) (((a[i] & 0xff) >> 0) & 0xf); e[2 * i + 1] = (byte) (((a[i] & 0xff) >> 4) & 0xf); } // each e[i] is between 0 and 15 // e[63] is between 0 and 7 // Rewrite e in a way that each e[i] is in [-8, 8]. // This can be done since a[63] is in [0, 7], the carry-over onto the most significant byte // a[63] can be at most 1. int carry = 0; for (int i = 0; i < e.length - 1; i++) { e[i] += carry; carry = e[i] + 8; carry >>= 4; e[i] -= carry << 4; } e[e.length - 1] += carry; PartialXYZT ret = new PartialXYZT(NEUTRAL); XYZT xyzt = new XYZT(); // Although B_TABLE's i can be at most 31 (stores only 32 4bit multiples of B) and we have 64 // 4bit values in e array, the below for loop adds cached values by iterating e by two in odd // indices. After the result, we can double the result point 4 times to shift the multiplication // scalar by 4 bits. for (int i = 1; i < e.length; i += 2) { CachedXYT t = new CachedXYT(CACHED_NEUTRAL); select(t, i / 2, e[i]); add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); } // Doubles the result 4 times to shift the multiplication scalar 4 bits to get the actual result // for the odd indices in e. XYZ xyz = new XYZ(); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); doubleXYZ(ret, XYZ.fromPartialXYZT(xyz, ret)); // Add multiples of B for even indices of e. for (int i = 0; i < e.length; i += 2) { CachedXYT t = new CachedXYT(CACHED_NEUTRAL); select(t, i / 2, e[i]); add(ret, XYZT.fromPartialXYZT(xyzt, ret), t); } // This check is to protect against flaws, i.e. if there is a computation error through a // faulty CPU or if the implementation contains a bug. XYZ result = new XYZ(ret); if (!result.isOnCurve()) { throw new IllegalStateException("arithmetic error in scalar multiplication"); } return result; } @SuppressWarnings("NarrowingCompoundAssignment") private static byte[] slide(byte[] a) { byte[] r = new byte[256]; // Writes each bit in a[0..31] into r[0..255]: // a = a[0]+256*a[1]+...+256^31*a[31] is equal to // r = r[0]+2*r[1]+...+2^255*r[255] for (int i = 0; i < 256; i++) { r[i] = (byte) (1 & ((a[i >> 3] & 0xff) >> (i & 7))); } // Transforms r[i] as odd values in [-15, 15] for (int i = 0; i < 256; i++) { if (r[i] != 0) { for (int b = 1; b <= 6 && i + b < 256; b++) { if (r[i + b] != 0) { if (r[i] + (r[i + b] << b) <= 15) { r[i] += r[i + b] << b; r[i + b] = 0; } else if (r[i] - (r[i + b] << b) >= -15) { r[i] -= r[i + b] << b; for (int k = i + b; k < 256; k++) { if (r[k] == 0) { r[k] = 1; break; } r[k] = 0; } } else { break; } } } } } return r; } /** * Computes {@code a}*{@code pointA}+{@code b}*B * where a = a[0]+256*a[1]+...+256^31*a[31]. * and b = b[0]+256*b[1]+...+256^31*b[31]. * B is the Ed25519 base point (x,4/5) with x positive. *
* Note that execution time varies based on the input since this will only be used in verification * of signatures. */ private static XYZ doubleScalarMultVarTime(byte[] a, XYZT pointA, byte[] b) { // pointA, 3*pointA, 5*pointA, 7*pointA, 9*pointA, 11*pointA, 13*pointA, 15*pointA CachedXYZT[] pointAArray = new CachedXYZT[8]; pointAArray[0] = new CachedXYZT(pointA); PartialXYZT t = new PartialXYZT(); doubleXYZT(t, pointA); XYZT doubleA = new XYZT(t); for (int i = 1; i < pointAArray.length; i++) { add(t, doubleA, pointAArray[i - 1]); pointAArray[i] = new CachedXYZT(new XYZT(t)); } byte[] aSlide = slide(a); byte[] bSlide = slide(b); t = new PartialXYZT(NEUTRAL); XYZT u = new XYZT(); int i = 255; for (; i >= 0; i--) { if (aSlide[i] != 0 || bSlide[i] != 0) { break; } } for (; i >= 0; i--) { doubleXYZ(t, new XYZ(t)); if (aSlide[i] > 0) { add(t, XYZT.fromPartialXYZT(u, t), pointAArray[aSlide[i] / 2]); } else if (aSlide[i] < 0) { sub(t, XYZT.fromPartialXYZT(u, t), pointAArray[-aSlide[i] / 2]); } if (bSlide[i] > 0) { add(t, XYZT.fromPartialXYZT(u, t), B2[bSlide[i] / 2]); } else if (bSlide[i] < 0) { sub(t, XYZT.fromPartialXYZT(u, t), B2[-bSlide[i] / 2]); } } return new XYZ(t); } /** * Returns true if {@code in} is nonzero. *
* Note that execution time might depend on the input {@code in}. */ private static boolean isNonZeroVarTime(long[] in) { long[] inCopy = new long[in.length + 1]; System.arraycopy(in, 0, inCopy, 0, in.length); Field25519.reduceCoefficients(inCopy); byte[] bytes = Field25519.contract(inCopy); for (byte b : bytes) { if (b != 0) { return true; } } return false; } /** * Returns the least significant bit of {@code in}. */ private static int getLsb(long[] in) { return Field25519.contract(in)[0] & 1; } /** * Negates all values in {@code in} and store it in {@code out}. */ private static void neg(long[] out, long[] in) { for (int i = 0; i < in.length; i++) { out[i] = -in[i]; } } /** * Computes {@code in}^(2^252-3) mod 2^255-19 and puts the result in {@code out}. */ private static void pow2252m3(long[] out, long[] in) { long[] t0 = new long[Field25519.LIMB_CNT]; long[] t1 = new long[Field25519.LIMB_CNT]; long[] t2 = new long[Field25519.LIMB_CNT]; // z2 = z1^2^1 Field25519.square(t0, in); // z8 = z2^2^2 Field25519.square(t1, t0); for (int i = 1; i < 2; i++) { Field25519.square(t1, t1); } // z9 = z1*z8 Field25519.mult(t1, in, t1); // z11 = z2*z9 Field25519.mult(t0, t0, t1); // z22 = z11^2^1 Field25519.square(t0, t0); // z_5_0 = z9*z22 Field25519.mult(t0, t1, t0); // z_10_5 = z_5_0^2^5 Field25519.square(t1, t0); for (int i = 1; i < 5; i++) { Field25519.square(t1, t1); } // z_10_0 = z_10_5*z_5_0 Field25519.mult(t0, t1, t0); // z_20_10 = z_10_0^2^10 Field25519.square(t1, t0); for (int i = 1; i < 10; i++) { Field25519.square(t1, t1); } // z_20_0 = z_20_10*z_10_0 Field25519.mult(t1, t1, t0); // z_40_20 = z_20_0^2^20 Field25519.square(t2, t1); for (int i = 1; i < 20; i++) { Field25519.square(t2, t2); } // z_40_0 = z_40_20*z_20_0 Field25519.mult(t1, t2, t1); // z_50_10 = z_40_0^2^10 Field25519.square(t1, t1); for (int i = 1; i < 10; i++) { Field25519.square(t1, t1); } // z_50_0 = z_50_10*z_10_0 Field25519.mult(t0, t1, t0); // z_100_50 = z_50_0^2^50 Field25519.square(t1, t0); for (int i = 1; i < 50; i++) { Field25519.square(t1, t1); } // z_100_0 = z_100_50*z_50_0 Field25519.mult(t1, t1, t0); // z_200_100 = z_100_0^2^100 Field25519.square(t2, t1); for (int i = 1; i < 100; i++) { Field25519.square(t2, t2); } // z_200_0 = z_200_100*z_100_0 Field25519.mult(t1, t2, t1); // z_250_50 = z_200_0^2^50 Field25519.square(t1, t1); for (int i = 1; i < 50; i++) { Field25519.square(t1, t1); } // z_250_0 = z_250_50*z_50_0 Field25519.mult(t0, t1, t0); // z_252_2 = z_250_0^2^2 Field25519.square(t0, t0); for (int i = 1; i < 2; i++) { Field25519.square(t0, t0); } // z_252_3 = z_252_2*z1 Field25519.mult(out, t0, in); } /** * Returns 3 bytes of {@code in} starting from {@code idx} in Little-Endian format. */ private static long load3(byte[] in, int idx) { long result; result = (long) in[idx] & 0xff; result |= (long) (in[idx + 1] & 0xff) << 8; result |= (long) (in[idx + 2] & 0xff) << 16; return result; } /** * Returns 4 bytes of {@code in} starting from {@code idx} in Little-Endian format. */ private static long load4(byte[] in, int idx) { long result = load3(in, idx); result |= (long) (in[idx + 3] & 0xff) << 24; return result; } /** * Input: * s[0]+256*s[1]+...+256^63*s[63] = s *
* Output: * s[0]+256*s[1]+...+256^31*s[31] = s mod l * where l = 2^252 + 27742317777372353535851937790883648493. * Overwrites s in place. */ private static void reduce(byte[] s) { // Observation: // 2^252 mod l is equivalent to -27742317777372353535851937790883648493 mod l // Let m = -27742317777372353535851937790883648493 // Thus a*2^252+b mod l is equivalent to a*m+b mod l // // First s is divided into chunks of 21 bits as follows: // s0+2^21*s1+2^42*s3+...+2^462*s23 = s[0]+256*s[1]+...+256^63*s[63] long s0 = 2097151 & load3(s, 0); long s1 = 2097151 & (load4(s, 2) >> 5); long s2 = 2097151 & (load3(s, 5) >> 2); long s3 = 2097151 & (load4(s, 7) >> 7); long s4 = 2097151 & (load4(s, 10) >> 4); long s5 = 2097151 & (load3(s, 13) >> 1); long s6 = 2097151 & (load4(s, 15) >> 6); long s7 = 2097151 & (load3(s, 18) >> 3); long s8 = 2097151 & load3(s, 21); long s9 = 2097151 & (load4(s, 23) >> 5); long s10 = 2097151 & (load3(s, 26) >> 2); long s11 = 2097151 & (load4(s, 28) >> 7); long s12 = 2097151 & (load4(s, 31) >> 4); long s13 = 2097151 & (load3(s, 34) >> 1); long s14 = 2097151 & (load4(s, 36) >> 6); long s15 = 2097151 & (load3(s, 39) >> 3); long s16 = 2097151 & load3(s, 42); long s17 = 2097151 & (load4(s, 44) >> 5); long s18 = 2097151 & (load3(s, 47) >> 2); long s19 = 2097151 & (load4(s, 49) >> 7); long s20 = 2097151 & (load4(s, 52) >> 4); long s21 = 2097151 & (load3(s, 55) >> 1); long s22 = 2097151 & (load4(s, 57) >> 6); long s23 = (load4(s, 60) >> 3); long carry0; long carry1; long carry2; long carry3; long carry4; long carry5; long carry6; long carry7; long carry8; long carry9; long carry10; long carry11; long carry12; long carry13; long carry14; long carry15; long carry16; // s23*2^462 = s23*2^210*2^252 is equivalent to s23*2^210*m in mod l // As m is a 125 bit number, the result needs to scattered to 6 limbs (125/21 ceil is 6) // starting from s11 (s11*2^210) // m = [666643, 470296, 654183, -997805, 136657, -683901] in 21-bit limbs s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; // s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; // s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; // s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; // s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; // s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; // s18 = 0; // Reduce the bit length of limbs from s6 to s15 to 21-bits. carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; // Resume reduction where we left off. s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; // s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; // s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; // s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; // s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; // s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; // Reduce the range of limbs from s0 to s11 to 21-bits. carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; // Carry chain reduction to propagate excess bits from s0 to s5 to the most significant limbs. carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; // Do one last reduction as s12 might be 1. s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; // s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; // Serialize the result into the s. s[0] = (byte) s0; s[1] = (byte) (s0 >> 8); s[2] = (byte) ((s0 >> 16) | (s1 << 5)); s[3] = (byte) (s1 >> 3); s[4] = (byte) (s1 >> 11); s[5] = (byte) ((s1 >> 19) | (s2 << 2)); s[6] = (byte) (s2 >> 6); s[7] = (byte) ((s2 >> 14) | (s3 << 7)); s[8] = (byte) (s3 >> 1); s[9] = (byte) (s3 >> 9); s[10] = (byte) ((s3 >> 17) | (s4 << 4)); s[11] = (byte) (s4 >> 4); s[12] = (byte) (s4 >> 12); s[13] = (byte) ((s4 >> 20) | (s5 << 1)); s[14] = (byte) (s5 >> 7); s[15] = (byte) ((s5 >> 15) | (s6 << 6)); s[16] = (byte) (s6 >> 2); s[17] = (byte) (s6 >> 10); s[18] = (byte) ((s6 >> 18) | (s7 << 3)); s[19] = (byte) (s7 >> 5); s[20] = (byte) (s7 >> 13); s[21] = (byte) s8; s[22] = (byte) (s8 >> 8); s[23] = (byte) ((s8 >> 16) | (s9 << 5)); s[24] = (byte) (s9 >> 3); s[25] = (byte) (s9 >> 11); s[26] = (byte) ((s9 >> 19) | (s10 << 2)); s[27] = (byte) (s10 >> 6); s[28] = (byte) ((s10 >> 14) | (s11 << 7)); s[29] = (byte) (s11 >> 1); s[30] = (byte) (s11 >> 9); s[31] = (byte) (s11 >> 17); } /** * Input: * a[0]+256*a[1]+...+256^31*a[31] = a * b[0]+256*b[1]+...+256^31*b[31] = b * c[0]+256*c[1]+...+256^31*c[31] = c *
* Output: * s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l * where l = 2^252 + 27742317777372353535851937790883648493. */ private static void mulAdd(byte[] s, byte[] a, byte[] b, byte[] c) { // This is very similar to Ed25519.reduce, the difference in here is that it computes ab+c // See Ed25519.reduce for related comments. long a0 = 2097151 & load3(a, 0); long a1 = 2097151 & (load4(a, 2) >> 5); long a2 = 2097151 & (load3(a, 5) >> 2); long a3 = 2097151 & (load4(a, 7) >> 7); long a4 = 2097151 & (load4(a, 10) >> 4); long a5 = 2097151 & (load3(a, 13) >> 1); long a6 = 2097151 & (load4(a, 15) >> 6); long a7 = 2097151 & (load3(a, 18) >> 3); long a8 = 2097151 & load3(a, 21); long a9 = 2097151 & (load4(a, 23) >> 5); long a10 = 2097151 & (load3(a, 26) >> 2); long a11 = (load4(a, 28) >> 7); long b0 = 2097151 & load3(b, 0); long b1 = 2097151 & (load4(b, 2) >> 5); long b2 = 2097151 & (load3(b, 5) >> 2); long b3 = 2097151 & (load4(b, 7) >> 7); long b4 = 2097151 & (load4(b, 10) >> 4); long b5 = 2097151 & (load3(b, 13) >> 1); long b6 = 2097151 & (load4(b, 15) >> 6); long b7 = 2097151 & (load3(b, 18) >> 3); long b8 = 2097151 & load3(b, 21); long b9 = 2097151 & (load4(b, 23) >> 5); long b10 = 2097151 & (load3(b, 26) >> 2); long b11 = (load4(b, 28) >> 7); long c0 = 2097151 & load3(c, 0); long c1 = 2097151 & (load4(c, 2) >> 5); long c2 = 2097151 & (load3(c, 5) >> 2); long c3 = 2097151 & (load4(c, 7) >> 7); long c4 = 2097151 & (load4(c, 10) >> 4); long c5 = 2097151 & (load3(c, 13) >> 1); long c6 = 2097151 & (load4(c, 15) >> 6); long c7 = 2097151 & (load3(c, 18) >> 3); long c8 = 2097151 & load3(c, 21); long c9 = 2097151 & (load4(c, 23) >> 5); long c10 = 2097151 & (load3(c, 26) >> 2); long c11 = (load4(c, 28) >> 7); long s0; long s1; long s2; long s3; long s4; long s5; long s6; long s7; long s8; long s9; long s10; long s11; long s12; long s13; long s14; long s15; long s16; long s17; long s18; long s19; long s20; long s21; long s22; long s23; long carry0; long carry1; long carry2; long carry3; long carry4; long carry5; long carry6; long carry7; long carry8; long carry9; long carry10; long carry11; long carry12; long carry13; long carry14; long carry15; long carry16; long carry17; long carry18; long carry19; long carry20; long carry21; long carry22; s0 = c0 + a0 * b0; s1 = c1 + a0 * b1 + a1 * b0; s2 = c2 + a0 * b2 + a1 * b1 + a2 * b0; s3 = c3 + a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0; s4 = c4 + a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0; s5 = c5 + a0 * b5 + a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 + a5 * b0; s6 = c6 + a0 * b6 + a1 * b5 + a2 * b4 + a3 * b3 + a4 * b2 + a5 * b1 + a6 * b0; s7 = c7 + a0 * b7 + a1 * b6 + a2 * b5 + a3 * b4 + a4 * b3 + a5 * b2 + a6 * b1 + a7 * b0; s8 = c8 + a0 * b8 + a1 * b7 + a2 * b6 + a3 * b5 + a4 * b4 + a5 * b3 + a6 * b2 + a7 * b1 + a8 * b0; s9 = c9 + a0 * b9 + a1 * b8 + a2 * b7 + a3 * b6 + a4 * b5 + a5 * b4 + a6 * b3 + a7 * b2 + a8 * b1 + a9 * b0; s10 = c10 + a0 * b10 + a1 * b9 + a2 * b8 + a3 * b7 + a4 * b6 + a5 * b5 + a6 * b4 + a7 * b3 + a8 * b2 + a9 * b1 + a10 * b0; s11 = c11 + a0 * b11 + a1 * b10 + a2 * b9 + a3 * b8 + a4 * b7 + a5 * b6 + a6 * b5 + a7 * b4 + a8 * b3 + a9 * b2 + a10 * b1 + a11 * b0; s12 = a1 * b11 + a2 * b10 + a3 * b9 + a4 * b8 + a5 * b7 + a6 * b6 + a7 * b5 + a8 * b4 + a9 * b3 + a10 * b2 + a11 * b1; s13 = a2 * b11 + a3 * b10 + a4 * b9 + a5 * b8 + a6 * b7 + a7 * b6 + a8 * b5 + a9 * b4 + a10 * b3 + a11 * b2; s14 = a3 * b11 + a4 * b10 + a5 * b9 + a6 * b8 + a7 * b7 + a8 * b6 + a9 * b5 + a10 * b4 + a11 * b3; s15 = a4 * b11 + a5 * b10 + a6 * b9 + a7 * b8 + a8 * b7 + a9 * b6 + a10 * b5 + a11 * b4; s16 = a5 * b11 + a6 * b10 + a7 * b9 + a8 * b8 + a9 * b7 + a10 * b6 + a11 * b5; s17 = a6 * b11 + a7 * b10 + a8 * b9 + a9 * b8 + a10 * b7 + a11 * b6; s18 = a7 * b11 + a8 * b10 + a9 * b9 + a10 * b8 + a11 * b7; s19 = a8 * b11 + a9 * b10 + a10 * b9 + a11 * b8; s20 = a9 * b11 + a10 * b10 + a11 * b9; s21 = a10 * b11 + a11 * b10; s22 = a11 * b11; s23 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry18 = (s18 + (1 << 20)) >> 21; s19 += carry18; s18 -= carry18 << 21; carry20 = (s20 + (1 << 20)) >> 21; s21 += carry20; s20 -= carry20 << 21; carry22 = (s22 + (1 << 20)) >> 21; s23 += carry22; s22 -= carry22 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; carry17 = (s17 + (1 << 20)) >> 21; s18 += carry17; s17 -= carry17 << 21; carry19 = (s19 + (1 << 20)) >> 21; s20 += carry19; s19 -= carry19 << 21; carry21 = (s21 + (1 << 20)) >> 21; s22 += carry21; s21 -= carry21 << 21; s11 += s23 * 666643; s12 += s23 * 470296; s13 += s23 * 654183; s14 -= s23 * 997805; s15 += s23 * 136657; s16 -= s23 * 683901; // s23 = 0; s10 += s22 * 666643; s11 += s22 * 470296; s12 += s22 * 654183; s13 -= s22 * 997805; s14 += s22 * 136657; s15 -= s22 * 683901; // s22 = 0; s9 += s21 * 666643; s10 += s21 * 470296; s11 += s21 * 654183; s12 -= s21 * 997805; s13 += s21 * 136657; s14 -= s21 * 683901; // s21 = 0; s8 += s20 * 666643; s9 += s20 * 470296; s10 += s20 * 654183; s11 -= s20 * 997805; s12 += s20 * 136657; s13 -= s20 * 683901; // s20 = 0; s7 += s19 * 666643; s8 += s19 * 470296; s9 += s19 * 654183; s10 -= s19 * 997805; s11 += s19 * 136657; s12 -= s19 * 683901; // s19 = 0; s6 += s18 * 666643; s7 += s18 * 470296; s8 += s18 * 654183; s9 -= s18 * 997805; s10 += s18 * 136657; s11 -= s18 * 683901; // s18 = 0; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry12 = (s12 + (1 << 20)) >> 21; s13 += carry12; s12 -= carry12 << 21; carry14 = (s14 + (1 << 20)) >> 21; s15 += carry14; s14 -= carry14 << 21; carry16 = (s16 + (1 << 20)) >> 21; s17 += carry16; s16 -= carry16 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; carry13 = (s13 + (1 << 20)) >> 21; s14 += carry13; s13 -= carry13 << 21; carry15 = (s15 + (1 << 20)) >> 21; s16 += carry15; s15 -= carry15 << 21; s5 += s17 * 666643; s6 += s17 * 470296; s7 += s17 * 654183; s8 -= s17 * 997805; s9 += s17 * 136657; s10 -= s17 * 683901; // s17 = 0; s4 += s16 * 666643; s5 += s16 * 470296; s6 += s16 * 654183; s7 -= s16 * 997805; s8 += s16 * 136657; s9 -= s16 * 683901; // s16 = 0; s3 += s15 * 666643; s4 += s15 * 470296; s5 += s15 * 654183; s6 -= s15 * 997805; s7 += s15 * 136657; s8 -= s15 * 683901; // s15 = 0; s2 += s14 * 666643; s3 += s14 * 470296; s4 += s14 * 654183; s5 -= s14 * 997805; s6 += s14 * 136657; s7 -= s14 * 683901; // s14 = 0; s1 += s13 * 666643; s2 += s13 * 470296; s3 += s13 * 654183; s4 -= s13 * 997805; s5 += s13 * 136657; s6 -= s13 * 683901; // s13 = 0; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = (s0 + (1 << 20)) >> 21; s1 += carry0; s0 -= carry0 << 21; carry2 = (s2 + (1 << 20)) >> 21; s3 += carry2; s2 -= carry2 << 21; carry4 = (s4 + (1 << 20)) >> 21; s5 += carry4; s4 -= carry4 << 21; carry6 = (s6 + (1 << 20)) >> 21; s7 += carry6; s6 -= carry6 << 21; carry8 = (s8 + (1 << 20)) >> 21; s9 += carry8; s8 -= carry8 << 21; carry10 = (s10 + (1 << 20)) >> 21; s11 += carry10; s10 -= carry10 << 21; carry1 = (s1 + (1 << 20)) >> 21; s2 += carry1; s1 -= carry1 << 21; carry3 = (s3 + (1 << 20)) >> 21; s4 += carry3; s3 -= carry3 << 21; carry5 = (s5 + (1 << 20)) >> 21; s6 += carry5; s5 -= carry5 << 21; carry7 = (s7 + (1 << 20)) >> 21; s8 += carry7; s7 -= carry7 << 21; carry9 = (s9 + (1 << 20)) >> 21; s10 += carry9; s9 -= carry9 << 21; carry11 = (s11 + (1 << 20)) >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; carry11 = s11 >> 21; s12 += carry11; s11 -= carry11 << 21; s0 += s12 * 666643; s1 += s12 * 470296; s2 += s12 * 654183; s3 -= s12 * 997805; s4 += s12 * 136657; s5 -= s12 * 683901; // s12 = 0; carry0 = s0 >> 21; s1 += carry0; s0 -= carry0 << 21; carry1 = s1 >> 21; s2 += carry1; s1 -= carry1 << 21; carry2 = s2 >> 21; s3 += carry2; s2 -= carry2 << 21; carry3 = s3 >> 21; s4 += carry3; s3 -= carry3 << 21; carry4 = s4 >> 21; s5 += carry4; s4 -= carry4 << 21; carry5 = s5 >> 21; s6 += carry5; s5 -= carry5 << 21; carry6 = s6 >> 21; s7 += carry6; s6 -= carry6 << 21; carry7 = s7 >> 21; s8 += carry7; s7 -= carry7 << 21; carry8 = s8 >> 21; s9 += carry8; s8 -= carry8 << 21; carry9 = s9 >> 21; s10 += carry9; s9 -= carry9 << 21; carry10 = s10 >> 21; s11 += carry10; s10 -= carry10 << 21; s[0] = (byte) s0; s[1] = (byte) (s0 >> 8); s[2] = (byte) ((s0 >> 16) | (s1 << 5)); s[3] = (byte) (s1 >> 3); s[4] = (byte) (s1 >> 11); s[5] = (byte) ((s1 >> 19) | (s2 << 2)); s[6] = (byte) (s2 >> 6); s[7] = (byte) ((s2 >> 14) | (s3 << 7)); s[8] = (byte) (s3 >> 1); s[9] = (byte) (s3 >> 9); s[10] = (byte) ((s3 >> 17) | (s4 << 4)); s[11] = (byte) (s4 >> 4); s[12] = (byte) (s4 >> 12); s[13] = (byte) ((s4 >> 20) | (s5 << 1)); s[14] = (byte) (s5 >> 7); s[15] = (byte) ((s5 >> 15) | (s6 << 6)); s[16] = (byte) (s6 >> 2); s[17] = (byte) (s6 >> 10); s[18] = (byte) ((s6 >> 18) | (s7 << 3)); s[19] = (byte) (s7 >> 5); s[20] = (byte) (s7 >> 13); s[21] = (byte) s8; s[22] = (byte) (s8 >> 8); s[23] = (byte) ((s8 >> 16) | (s9 << 5)); s[24] = (byte) (s9 >> 3); s[25] = (byte) (s9 >> 11); s[26] = (byte) ((s9 >> 19) | (s10 << 2)); s[27] = (byte) (s10 >> 6); s[28] = (byte) ((s10 >> 14) | (s11 << 7)); s[29] = (byte) (s11 >> 1); s[30] = (byte) (s11 >> 9); s[31] = (byte) (s11 >> 17); } // The order of the generator as unsigned bytes in little endian order. // (2^252 + 0x14def9dea2f79cd65812631a5cf5d3ed, cf. RFC 7748) private static final byte[] GROUP_ORDER = { (byte) 0xed, (byte) 0xd3, (byte) 0xf5, (byte) 0x5c, (byte) 0x1a, (byte) 0x63, (byte) 0x12, (byte) 0x58, (byte) 0xd6, (byte) 0x9c, (byte) 0xf7, (byte) 0xa2, (byte) 0xde, (byte) 0xf9, (byte) 0xde, (byte) 0x14, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x00, (byte) 0x10}; // Checks whether s represents an integer smaller than the order of the group. // This is needed to ensure that EdDSA signatures are non-malleable, as failing to check // the range of S allows to modify signatures (cf. RFC 8032, Section 5.2.7 and Section 8.4.) // @param s an integer in little-endian order. private static boolean isSmallerThanGroupOrder(byte[] s) { for (int j = Field25519.FIELD_LEN - 1; j >= 0; j--) { // compare unsigned bytes int a = s[j] & 0xff; int b = GROUP_ORDER[j] & 0xff; if (a != b) { return a < b; } } return false; } /** * Returns true if the EdDSA {@code signature} with {@code message}, can be verified with * {@code publicKey}. */ public static boolean verify(final byte[] message, final byte[] signature, final byte[] publicKey) { try { if (signature.length != SIGNATURE_LEN) { return false; } if (publicKey.length != PUBLIC_KEY_LEN) { return false; } byte[] s = Arrays.copyOfRange(signature, Field25519.FIELD_LEN, SIGNATURE_LEN); if (!isSmallerThanGroupOrder(s)) { return false; } MessageDigest digest = MessageDigest.getInstance("SHA-512"); digest.update(signature, 0, Field25519.FIELD_LEN); digest.update(publicKey); digest.update(message); byte[] h = digest.digest(); reduce(h); XYZT negPublicKey = XYZT.fromBytesNegateVarTime(publicKey); XYZ xyz = doubleScalarMultVarTime(h, negPublicKey, s); byte[] expectedR = xyz.toBytes(); for (int i = 0; i < Field25519.FIELD_LEN; i++) { if (expectedR[i] != signature[i]) { return false; } } return true; } catch (final GeneralSecurityException ignored) { return false; } } }