diff --git a/app/src/main/java/com/wireguard/crypto/Curve25519.java b/app/src/main/java/com/wireguard/crypto/Curve25519.java index a20c9f97..20aae598 100644 --- a/app/src/main/java/com/wireguard/crypto/Curve25519.java +++ b/app/src/main/java/com/wireguard/crypto/Curve25519.java @@ -10,23 +10,23 @@ import java.util.Arrays; /** * Implementation of the Curve25519 elliptic curve algorithm. *

+ * This implementation was imported to WireGuard from noise-java: + * https://github.com/rweather/noise-java + *

* This implementation is based on that from arduinolibs: * https://github.com/rweather/arduinolibs *

- * This implementation is copied verbatim from noise-java: - * https://github.com/rweather/noise-java - *

* Differences in this version are due to using 26-bit limbs for the * representation instead of the 8/16/32-bit limbs in the original. *

* References: http://cr.yp.to/ecdh.html, RFC 7748 */ -@SuppressWarnings("MagicNumber") +@SuppressWarnings({"MagicNumber", "NonConstantFieldWithUpperCaseName", "SuspiciousNameCombination"}) public final class Curve25519 { - // Numbers modulo 2^255 - 19 are broken up into ten 26-bit words. private static final int NUM_LIMBS_255BIT = 10; private static final int NUM_LIMBS_510BIT = 20; + private final int[] A; private final int[] AA; private final int[] B; @@ -152,6 +152,38 @@ public final class Curve25519 { } } + /** + * Subtracts two numbers modulo 2^255 - 19. + * + * @param result The result. + * @param x The first number to subtract. + * @param y The second number to subtract. + */ + private static void sub(final int[] result, final int[] x, final int[] y) { + int index; + int borrow; + + // Subtract y from x to generate the intermediate result. + borrow = 0; + for (index = 0; index < NUM_LIMBS_255BIT; ++index) { + borrow = x[index] - y[index] - ((borrow >> 26) & 0x01); + result[index] = borrow & 0x03FFFFFF; + } + + // If we had a borrow, then the result has gone negative and we + // have to add 2^255 - 19 to the result to make it positive again. + // The top bits of "borrow" will be all 1's if there is a borrow + // or it will be all 0's if there was no borrow. Easiest is to + // conditionally subtract 19 and then mask off the high bits. + borrow = result[0] - ((-((borrow >> 26) & 0x01)) & 19); + result[0] = borrow & 0x03FFFFFF; + for (index = 1; index < NUM_LIMBS_255BIT; ++index) { + borrow = result[index] - ((borrow >> 26) & 0x01); + result[index] = borrow & 0x03FFFFFF; + } + result[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF; + } + /** * Adds two numbers modulo 2^255 - 19. * @@ -160,8 +192,7 @@ public final class Curve25519 { * @param y The second number to add. */ private void add(final int[] result, final int[] x, final int[] y) { - int carry; - carry = x[0] + y[0]; + int carry = x[0] + y[0]; result[0] = carry & 0x03FFFFFF; for (int index = 1; index < NUM_LIMBS_255BIT; ++index) { carry = (carry >> 26) + x[index] + y[index]; @@ -200,12 +231,13 @@ public final class Curve25519 { */ private void evalCurve(final byte[] s) { int sposn = 31; + int sbit = 6; int svalue = s[sposn] | 0x40; int swap = 0; // Iterate over all 255 bits of "s" from the highest to the lowest. // We ignore the high bit of the 256-bit representation of "s". - for (int sbit = 6; ; ) { + while (true) { // Conditional swaps on entry to this bit but only if we // didn't swap on the previous bit. final int select = (svalue >> sbit) & 0x01; @@ -263,14 +295,12 @@ public final class Curve25519 { * @param y The second number to multiply. */ private void mul(final int[] result, final int[] x, final int[] y) { - int i; - // Multiply the two numbers to create the intermediate result. long v = x[0]; - for (i = 0; i < NUM_LIMBS_255BIT; ++i) { + for (int i = 0; i < NUM_LIMBS_255BIT; ++i) { t1[i] = v * y[i]; } - for (i = 1; i < NUM_LIMBS_255BIT; ++i) { + for (int i = 1; i < NUM_LIMBS_255BIT; ++i) { v = x[i]; for (int j = 0; j < (NUM_LIMBS_255BIT - 1); ++j) { t1[i + j] += v * y[j]; @@ -281,7 +311,7 @@ public final class Curve25519 { // Propagate carries and convert back into 26-bit words. v = t1[0]; t2[0] = ((int) v) & 0x03FFFFFF; - for (i = 1; i < NUM_LIMBS_510BIT; ++i) { + for (int i = 1; i < NUM_LIMBS_510BIT; ++i) { v = (v >> 26) + t1[i]; t2[i] = ((int) v) & 0x03FFFFFF; } @@ -315,8 +345,6 @@ public final class Curve25519 { * @param x The argument. */ private void pow250(final int[] result, final int[] x) { - int j; - // The big-endian hexadecimal expansion of (2^250 - 1) is: // 03FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF // @@ -329,11 +357,11 @@ public final class Curve25519 { // Build a pattern of 250 bits in length of repeated copies of 0000000001. square(A, x); - for (j = 0; j < 9; ++j) + for (int j = 0; j < 9; ++j) square(A, A); mul(result, A, x); for (int i = 0; i < 23; ++i) { - for (j = 0; j < 10; ++j) + for (int j = 0; j < 10; ++j) square(A, A); mul(result, result, A); } @@ -342,7 +370,7 @@ public final class Curve25519 { // the result to "fill in" the gaps in the pattern. square(A, result); mul(result, result, A); - for (j = 0; j < 8; ++j) { + for (int j = 0; j < 8; ++j) { square(A, A); mul(result, result, A); } @@ -381,18 +409,14 @@ public final class Curve25519 { * @param size The number of limbs in the high order half of x. */ private void reduce(final int[] result, final int[] x, final int size) { - int index; - int limb; - int carry; - // Calculate (x mod 2^255) + ((x / 2^255) * 19) which will // either produce the answer we want or it will produce a // value of the form "answer + j * (2^255 - 19)". There are // 5 left-over bits in the top-most limb of the bottom half. - carry = 0; - limb = x[NUM_LIMBS_255BIT - 1] >> 21; + int carry = 0; + int limb = x[NUM_LIMBS_255BIT - 1] >> 21; x[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF; - for (index = 0; index < size; ++index) { + for (int index = 0; index < size; ++index) { limb += x[NUM_LIMBS_255BIT + index] << 5; carry += (limb & 0x03FFFFFF) * 19 + x[index]; x[index] = carry & 0x03FFFFFF; @@ -402,7 +426,7 @@ public final class Curve25519 { if (size < NUM_LIMBS_255BIT) { // The high order half of the number is short; e.g. for mulA24(). // Propagate the carry through the rest of the low order part. - for (index = size; index < NUM_LIMBS_255BIT; ++index) { + for (int index = size; index < NUM_LIMBS_255BIT; ++index) { carry += x[index]; x[index] = carry & 0x03FFFFFF; carry >>= 26; @@ -417,7 +441,7 @@ public final class Curve25519 { // top 5 bits of the highest limb of the bottom half. carry = (x[NUM_LIMBS_255BIT - 1] >> 21) * 19; x[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF; - for (index = 0; index < NUM_LIMBS_255BIT; ++index) { + for (int index = 0; index < NUM_LIMBS_255BIT; ++index) { carry += x[index]; result[index] = carry & 0x03FFFFFF; carry >>= 26; @@ -436,14 +460,11 @@ public final class Curve25519 { * @param x The number to reduce, and the result. */ private void reduceQuick(final int[] x) { - int index; - int carry; - // Perform a trial subtraction of (2^255 - 19) from "x" which is // equivalent to adding 19 and subtracting 2^255. We add 19 here; // the subtraction of 2^255 occurs in the next step. - carry = 19; - for (index = 0; index < NUM_LIMBS_255BIT; ++index) { + int carry = 19; + for (int index = 0; index < NUM_LIMBS_255BIT; ++index) { carry += x[index]; t2[index] = carry & 0x03FFFFFF; carry >>= 26; @@ -457,7 +478,7 @@ public final class Curve25519 { final int mask = -((t2[NUM_LIMBS_255BIT - 1] >> 21) & 0x01); final int nmask = ~mask; t2[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF; - for (index = 0; index < NUM_LIMBS_255BIT; ++index) + for (int index = 0; index < NUM_LIMBS_255BIT; ++index) x[index] = (x[index] & nmask) | (t2[index] & mask); } @@ -470,36 +491,4 @@ public final class Curve25519 { private void square(final int[] result, final int[] x) { mul(result, x, x); } - - /** - * Subtracts two numbers modulo 2^255 - 19. - * - * @param result The result. - * @param x The first number to subtract. - * @param y The second number to subtract. - */ - private static void sub(final int[] result, final int[] x, final int[] y) { - int index; - int borrow; - - // Subtract y from x to generate the intermediate result. - borrow = 0; - for (index = 0; index < NUM_LIMBS_255BIT; ++index) { - borrow = x[index] - y[index] - ((borrow >> 26) & 0x01); - result[index] = borrow & 0x03FFFFFF; - } - - // If we had a borrow, then the result has gone negative and we - // have to add 2^255 - 19 to the result to make it positive again. - // The top bits of "borrow" will be all 1's if there is a borrow - // or it will be all 0's if there was no borrow. Easiest is to - // conditionally subtract 19 and then mask off the high bits. - borrow = result[0] - ((-((borrow >> 26) & 0x01)) & 19); - result[0] = borrow & 0x03FFFFFF; - for (index = 1; index < NUM_LIMBS_255BIT; ++index) { - borrow = result[index] - ((borrow >> 26) & 0x01); - result[index] = borrow & 0x03FFFFFF; - } - result[NUM_LIMBS_255BIT - 1] &= 0x001FFFFF; - } }