This is a layer 3 TUN driver for Windows 7, 8, 8.1, and 10. Originally created for [WireGuard](https://www.wireguard.com/), it is intended to be useful to a wide variety of projects that require layer 3 tunneling devices with implementations primarily in userspace.
Digital signing is an integral part of the build process. By default, the driver will be test-signed using a certificate that the WDK should automatically generate. To subsequently load the driver, you will need to put your computer into test mode by executing as Administrator `bcdedit /set testsigning on`.
If you possess an EV certificate for kernel mode code signing you should switch TUN driver digital signing from test-signing to production-signing by authoring your `wintun.vcxproj.user` file to look something like this:
Modify the `<CrossCertificateFile>` to contain the full path to the cross-signing certificate of CA that issued your certificate. You should be able to find its `.crt` file in `C:\Program Files (x86)\Windows Kits\10\CrossCertificates`. Note that the `$(WDKContentRoot)` expands to `C:\Program Files (x86)\Windows Kits\10\`.
If you already have `wintun.vcxproj.user` file, just add the `<PropertyGroup>` section.
Note: due to the use of SHA256 signatures throughout, Windows 7 users who would like a prompt-less installation generally need to have the [KB2921916 hotfix](https://support.microsoft.com/en-us/help/2921916/the-untrusted-publisher-dialog-box-appears-when-you-install-a-driver-i) installed, which can be obtained from these mirrors: [amd64](https://download.wireguard.com/windows-toolchain/distfiles/Windows6.1-KB2921916-x64.msu) and [x86](https://download.wireguard.com/windows-toolchain/distfiles/Windows6.1-KB2921916-x86.msu).
After loading the driver and creating a network interface the typical way using [SetupAPI](https://docs.microsoft.com/en-us/windows-hardware/drivers/install/setupapi), open `\\.\Global\WINTUN%d` as Local System, where `%d` is the [LUID](https://docs.microsoft.com/en-us/windows/desktop/api/ifdef/ns-ifdef-_net_luid_lh) index (`NetLuidIndex` member) of the network device.
You may then allocate two ring structs to use for exchanging packets:
```C
typedef struct _TUN_RING {
volatile ULONG Head;
volatile ULONG Tail;
volatile LONG Alertable;
UCHAR Data[];
} TUN_RING;
```
-`Head`: Byte offset of the first packet in the ring. Its value must be a multiple of 4 and less than ring capacity.
-`Tail`: Byte offset of the start of free space in the ring. Its value must be multiple of 4 and less than ring capacity.
-`Alertable`: Zero when the consumer is processing packets; Non-zero when the consumer has processed all packets and is waiting for `TailMoved` event.
-`Data`: The ring data. Determine the size of this array as:
1. Pick the ring capacity ranging from 128kiB to 64MiB in bytes. The capacity must be a power of two (e.g. 1MiB). The ring can hold up to this much data (4 bytes less to prevent `Tail` to overflow `Head`).
2. Add 0x10000 trailing bytes to the capacity. The trailing space allows a packet to remain contiguous that would otherwise require it to be wrapped at the ring edge. Mind that the `Tail` value must be wrapped modulo capacity nevertheless.
The total ring size memory is then `sizeof(TUN_RING)` + capacity + 0x10000.
Each packet is stored in the ring (4-byte aligned) as:
-`Send.RingSize`, `Receive.RingSize`: Sizes of the rings (`sizeof(TUN_RING)` + capacity + 0x10000 above)
-`Send.Ring`, `Receive.Ring`: Pointers to rings
-`Send.TailMoved`: An event created by the client the Wintun signals after it moves the Tail member of the send ring.
-`Receive.TailMoved`: An event created by the client the client will signal when it moves the Tail member of the receive ring (if receive ring is alertable).
With events created, send and receive rings allocated, descriptor struct initialized, call `TUN_IOCTL_REGISTER_RINGS` (0x22E000) [`DeviceIoControl`](https://docs.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol) with pointer and size of descriptor struct specified as `lpInBuffer` and `nInBufferSize` parameters. You may call `TUN_IOCTL_REGISTER_RINGS` on one handle only.
Wintun will abort reading the receive ring on invalid `Head` or `Tail`, invalid packet or an internal error. In this case, Wintun will set the `Head` to 0xFFFFFFFF. In order to restart it, you need to reopen the handle and call `TUN_IOCTL_REGISTER_RINGS` again.