#include "stdafx.h" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include using namespace std; using namespace cv; //! [declare] /// Global Variables bool use_mask; Mat img; Mat templ; Mat mask; Mat result; const char* image_window = "Source Image"; const char* result_window = "Result window"; int match_method; int max_Trackbar = 5; //! [declare] /// Function Headers void MatchingMethod(int, void*); /** * @function main */ int main(int argc, char** argv) { /*if (argc < 2) { cout << "Not enough parameters" << endl; cout << "Usage:\n./MatchTemplate_Demo " << endl; return -1; }*/ //! [load_image] /// Load image and template img = imread("2.jpg", IMREAD_COLOR); templ = imread("temp.jpg", IMREAD_COLOR); /*if (argc > 3) { use_mask = true; mask = imread(argv[3], IMREAD_COLOR); }*/ if (img.empty() || templ.empty() || (use_mask && mask.empty())) { cout << "Can't read one of the images" << endl; return -1; } //! [load_image] //! [create_windows] /// Create windows namedWindow(image_window, WINDOW_AUTOSIZE); namedWindow(result_window, WINDOW_AUTOSIZE); //! [create_windows] //! [create_trackbar] /// Create Trackbar const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED"; createTrackbar(trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod); //! [create_trackbar] MatchingMethod(0, 0); //! [wait_key] waitKey(0); return 0; //! [wait_key] } /** * @function MatchingMethod * @brief Trackbar callback */ void MatchingMethod(int, void*) { //! [copy_source] /// Source image to display Mat img_display; img.copyTo(img_display); //! [copy_source] //! [create_result_matrix] /// Create the result matrix int result_cols = img.cols - templ.cols + 1; int result_rows = img.rows - templ.rows + 1; result.create(result_rows, result_cols, CV_32FC1); //! [create_result_matrix] //! [match_template] /// Do the Matching and Normalize bool method_accepts_mask = (TM_SQDIFF == match_method || match_method == TM_CCORR_NORMED); if (use_mask && method_accepts_mask) { matchTemplate(img, templ, result, match_method, mask); } else { matchTemplate(img, templ, result, match_method); } //! [match_template] //! [normalize] normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat()); //! [normalize] //! [best_match] /// Localizing the best match with minMaxLoc double minVal; double maxVal; Point minLoc; Point maxLoc; Point matchLoc; minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat()); //! [best_match] //! [match_loc] /// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better if (match_method == TM_SQDIFF || match_method == TM_SQDIFF_NORMED) { matchLoc = minLoc; } else { matchLoc = maxLoc; } //! [match_loc] //! [imshow] /// Show me what you got rectangle(img_display, matchLoc, Point(matchLoc.x + templ.cols, matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0); rectangle(result, matchLoc, Point(matchLoc.x + templ.cols, matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0); imshow(image_window, img_display); imshow(result_window, result); //! [imshow] return; }