hesham-rsa/rsa.py
HeshamTB e5a66e4d29
Cleanup:
- Interface exit codes
	- Clean up
2020-04-19 15:45:51 +03:00

263 lines
8.4 KiB
Python
Executable File

#!/usr/bin/python3
#program to generate rsa key pair using methods in EE-305
# Hesham Banafa
"""
Large Prime check: https://www.alpertron.com.ar/ECM.HTM
To crack a key, find p or q through n. (prime factorazation)
Another way to find p or q from the private key:
https://crypto.stackexchange.com/questions/13113/how-can-i-find-the-prime-numbers-used-in-rsa
"""
import math
import os
import sys
import MillerRabin as mr
keysFolder = "keys/"
byteOrder = "little"
N=0
E=1
D=2
P=3
Q=4
PHI=5
ID=6
def main():
if len(sys.argv) > 1:
if sys.argv[1] == "gen": ##rsa gen <keysize> <keyname>
keyFileName = sys.argv[3]
key = generateKeys(keyFileName, int(sys.argv[2]))
printKey(key)
try:
saveKeyFile(key, keyFileName)
except IOError:
print("could not write file")
exit(1)
except Exception as ex:
print(ex)
exit(1)
exit(0)
if sys.argv[1] == "encrypt": ##rsa encrypt <message> <key> <signer>
if len(sys.argv) == 5:
msg = sys.argv[2]
msg_list = msg.split()
keyName = sys.argv[3]
signing_key_name = sys.argv[4]
key = readKeyFile(keyName)
signing_key = readKeyFile(signing_key_name)
key_public = (key[N], key[E])
msg_encrypted = ""
for word in msg_list:
msg_encrypted = msg_encrypted + " " + str(encrypt(word, key_public))
#msg_encrypted = encrypt(msg, key_public)
print("Encrypted msg: \n", msg_encrypted)
print("Signed: \n", sign(msg_encrypted, signing_key)) ## Adds an encrypted sig at the end of message.
else:
print("Not enough arguments")
print("rsa encrypt <message> <key> <signer>")
#Make help function
exit(0)
if sys.argv[1] == "decrypt": ##rsa decrypt "<cipher>" <key>
if len(sys.argv) == 4:
cipher = sys.argv[2]
cipher_list = cipher.split()
sig = verify(cipher_list)
del cipher_list[-1]
msg_decrypted = ""
key = readKeyFile(sys.argv[3])
for cipher_word in cipher_list:
msg_decrypted = msg_decrypted + " " + str(decrypt(int(cipher_word),key[D],key[N]))
print("Signed by: ", sig)
print("Decrypted message: \n", msg_decrypted)
else:
print("Not enough arguments")
print("rsa decrypt \"<cipher>\" <key>")
exit(0)
if sys.argv[1] == "list":
listKeys()
exit(0)
if sys.argv[1] == "export": #rsa export <key>
key_file_name = sys.argv[2]
exportKey(key_file_name)
exit(0)
#No command exit code
exit(127)
def generateKeys(id, bits=64):
from multiprocessing.pool import Pool
#Primes of size 32 bit random
#resulting in a 64-bit key mod
pool = Pool()
result1 = pool.apply_async(getPrime, [int(bits/2)])
result2 = pool.apply_async(getPrime, [int(bits/2)])
p = result1.get()
q = result2.get()
n = p*q
#print("n: ", n)
#lamda(n) = LCM(p-1, q-1)
#Since LCM(a,b) = ab/GCD(a,b)
#gcd = math.gcd(p-1, q-1)
#print("GCD: ", gcd)
#lcm = abs((p-1) * (q-1)) / gcd
#print("LCM: ", lcm)
phi = (p-1)*(q-1)
#print("phi: ", phi)
#e exponant should be 1 < e < lamda(n) and GCD(e, lamda(n)) = 1 (coprime)
# recommended value is 65,537
e = 65537
d = pow(e,-1,phi) # d = e^-1 mod phi
return (n, e, d, p, q, phi, id)
def encrypt(message, publicKey):
msg_text = message
n = publicKey[N]
e = publicKey[E]
print("using n: {0}, e: {1}".format(n, e))
msg_number_form = int.from_bytes(msg_text.encode(), byteOrder)
print("Word: %s or %d" % (msg_text, msg_number_form))
msg_encrypted_number_form = pow(msg_number_form, e, n) # c = msg^e mod n
return msg_encrypted_number_form
def decrypt(cipher, privateKey, n):
msg_encrypted_number_form = cipher
d = privateKey
msg_decrypted_number_form = pow(msg_encrypted_number_form, d, n) # msg = c^d mod n
msg_decrypted = int(msg_decrypted_number_form)
try:
msg_decrypted = str(msg_decrypted.to_bytes(msg_decrypted.bit_length(), byteOrder).decode()).strip()
except UnicodeDecodeError:
print("Cant decrypt properly")
return msg_decrypted
def getPrime(bits):
while True:
#Byte order "little" or "big" does not matter here since we want a random number from os.urandom()
x = int.from_bytes(os.urandom(int(bits/8)), byteOrder)
print("trying: ", x, end="")
if mr.is_prime(x):
print("\nprime: ", x)
return x
print("\r",end="")
def isPrime(number):
if number == 2:
return True
#if 2 devides number then num is not prime. pg.21
if number % 2 == 0 or number == 1:
return False
#largest integer less than or equal square root of number (K)
rootOfNum = math.sqrt(number)
K = math.floor(rootOfNum)
#Take odd D such that 1 < D <= K
#If D devides number then number is not prime. otherwise prime.
for D in range(1, K, 2):
if D % 2 == 0 or D == 1:
pass
else:
if number % D == 0 or number % 5 == 0:
return False
return True
def sign(encrypted_msg, key):
enc_msg = str(encrypted_msg)
encrypted_msg_list = enc_msg.split()
enc_sig = encrypt("sig:"+key[ID], (key[N], key[D]))
encrypted_msg_list.append(enc_sig)
signed_msg = ""
for word in encrypted_msg_list:
signed_msg = str(signed_msg) + " " + str(word)
return signed_msg.strip()
def verify(cipher_list):
sig = "Unknown"
local_keys = os.listdir(keysFolder)
cipher_list.reverse() #To get last word using index 0
encrypted_sig = cipher_list[0]
cipher_list.reverse()
for key_name in local_keys:
key = readKeyFile(key_name)
print("Found key: ", key_name)
sig = str(decrypt(int(encrypted_sig), key[E], key[N]))
if "sig:" in sig:
return sig.replace("sig:","")
def readKeyFile(keyName):
key = tuple()
with open(keysFolder+keyName, "r") as keyFile:
tempkey = keyFile.readlines()
if len(tempkey) == 3: #means it only public part (n, e, id)
key = (int(tempkey[N].strip(), 16), int(tempkey[E].strip(), 16), 0, 0, 0, 0, tempkey[2])
else: #Make this a loop from 0 to 5
key = (int(tempkey[N].strip(), 16),
int(tempkey[E].strip(), 16),
int(tempkey[D].strip(), 16),
int(tempkey[P].strip(), 16),
int(tempkey[Q].strip(), 16),
int(tempkey[PHI].strip(), 16),
str(tempkey[ID].strip()))
return key
def saveKeyFile(key, fileName):
if not os.path.isdir(keysFolder):
os.makedirs(keysFolder)
with open(keysFolder+fileName, "w") as keyFile:
for entry in range(0, 6):
if key[entry] != 0:
keyFile.write(hex(key[entry])+"\n")
else:
pass
keyFile.write(key[ID]+"\n")
def printKey(key):
n = key[N]
e = key[E]
d = key[D]
id = key[ID]
print("----------------------------------------------"+
"\nID: {}".format(id) +
"\n{}-BIT KEY".format(n.bit_length())+
"\nPUBLIC PART:"+
"\n{0}/{1}".format(hex(n), hex(e))+
"\nPTIVATE PART:"+
"\n{0}".format(hex(d))+
"\n----------------------------------------------",
)
def listKeys():
if not os.path.isdir(keysFolder):
os.makedirs(keysFolder)
local_keys = os.listdir(keysFolder)
if len(local_keys) == 0:
print("Cant find local keys.")
return
print("ID PRIVATE SIZE")
print("-------------------------")
for keyName in local_keys:
key = readKeyFile(keyName)
if key[D] == 0:
check = "".strip()
else: check = '\u2713'
print("%7s%7s%7s-bit" % (key[ID].strip(), check, key[N].bit_length()))
def exportKey(keyFileName):
key = readKeyFile(keyFileName)
public_key = (key[N], key[E], 0, 0, 0, 0, key[ID])
saveKeyFile(public_key, key[ID]+"-public")
print("Saved public form of key {} in keys folder".format(key[ID]))
if __name__ == "__main__":
main()