#!/usr/bin/python3 #program to generate rsa key pair using methods in EE-305 # Hesham Banafa #Large Prime check: https://www.alpertron.com.ar/ECM.HTM import math import os import sys keysFolder = "keys/" byteOrder = "little" def main(): if sys.argv[1] == "gen": ##rsa gen n ,e ,d = generateKeys(int(sys.argv[2])) key = (n, e, d) printKey(key) keyFileName = sys.argv[3] try: saveKeyFile(key, keyFileName) except IOError: print("could not write file") exit(1) except Exception as ex: print(ex) exit(1) if len(sys.argv) == 4: if sys.argv[1] == "encrypt": ##rsa encrypt msg = sys.argv[2] keyName = sys.argv[3] key = readKeyFile(keyName) key_public = (key[0], key[1]) msg_encrypted = encrypt(msg, key_public) print("Encrypted msg: ", msg_encrypted) if sys.argv[1] == "decrypt": ##rsa decrypt cipher = int(sys.argv[2]) key = readKeyFile(sys.argv[3]) #with open(fileName, "r") as cipherFile: # cipher = int(cipherFile.readline()) ##one line may make problems later with padding msg = decrypt(cipher, key[2],key[0]) print("Decrypted message: ", msg) def generateKeys(bits=64): from multiprocessing.pool import Pool #Primes of size 32 bit random #resulting in a 64-bit key mod pool = Pool() result1 = pool.apply_async(getPrime, [int(bits/2)]) result2 = pool.apply_async(getPrime, [int(bits/2)]) p = result1.get() q = result2.get() n = p*q #print("n: ", n) #lamda(n) = LCM(p-1, q-1) #Since LCM(a,b) = ab/GCD(a,b) #gcd = math.gcd(p-1, q-1) #print("GCD: ", gcd) #lcm = abs((p-1) * (q-1)) / gcd #print("LCM: ", lcm) phi = (p-1)*(q-1) #print("phi: ", phi) #e exponant should be 1 < e < lamda(n) and GCD(e, lamda(n)) = 1 (coprime) # recommended value is 65,537 e = 65537 d = pow(e,-1,phi) return n, e, d def encrypt(message, publicKey): msg_text = message n = publicKey[0] e = publicKey[1] print("using n: {0}, e: {1}".format(n, e)) msg_number_form = int.from_bytes(msg_text.encode(), byteOrder) print("Message: %s or %d" % (msg_text, msg_number_form)) msg_encrypted_number_form = pow(msg_number_form, e, n) # c = msg^e mod n return msg_encrypted_number_form def decrypt(cipher, privateKey, n): msg_encrypted_number_form = cipher d = privateKey msg_decrypted_number_form = pow(msg_encrypted_number_form, d, n) # msg = c^d mod n msg_decrypted = int(msg_decrypted_number_form) try: msg_decrypted = str(msg_decrypted.to_bytes(msg_decrypted.bit_length(), byteOrder).decode()).strip() except UnicodeDecodeError: print("Cant decrypt properly") return msg_decrypted def getPrime(bits): while True: #Byte order "little" or "big" does not matter here since we want a random number from os.urandom() x = int.from_bytes(os.urandom(int(bits/8)), byteOrder) print("trying: ", x, end="") if isPrime(x): print("\nprime: ", x) return x print("\r",end="") def isPrime(number): if number == 2: return True #if 2 devides number then num is not prime. pg.21 if number % 2 == 0 or number == 1: return False #largest integer less than or equal square root of number (K) rootOfNum = math.sqrt(number) K = math.floor(rootOfNum) #Take odd D such that 1 < D <= K #If D devides number then number is not prime. otherwise prime. for D in range(1, K, 2): if D % 2 == 0 or D == 1: pass else: if number % D == 0 or number % 5 == 0: return False return True def readKeyFile(keyName): key = tuple() with open(keysFolder+keyName, "r") as keyFile: tempkey = keyFile.readlines() key = (int(tempkey[0].strip(), 16), int(tempkey[1].strip(), 16), int(tempkey[2].strip(), 16)) return key def saveKeyFile(key, fileName): with open(keysFolder+fileName, "w") as keyFile: keyFile.write("{0}\n{1}\n{2}\n".format(hex(key[0]), hex(key[1]), hex(key[2]))) def printKey(key): n = key[0] e = key[1] d = key[2] print("----------------------------------------------"+ "\n{}-BIT KEY".format(n.bit_length())+ "\nPUBLIC PART:"+ "\n{0}/{1}".format(hex(n), hex(e))+ "\nPTIVATE PART:"+ "\n{0}".format(hex(d))+ "\n----------------------------------------------", ) if __name__ == "__main__": main()