hesham-rsa/rsa.py

136 lines
4.1 KiB
Python
Raw Normal View History

2020-04-15 23:05:03 +02:00
#!/usr/bin/python3
#program to generate rsa key pair using methods in EE-305
# Hesham Banafa
import math
import os
import sys
2020-04-15 23:05:03 +02:00
def main():
if sys.argv[1] == "gen" and len(sys.argv) == 4: ##rsa gen <keysize> <keyname>
n ,e ,d = generateKeys(int(sys.argv[2]))
key = (n, e, d)
keyFileName = sys.argv[3]
try:
saveKeyFile(key, keyFileName)
except IOError:
print("could not write file")
exit(1)
except Exception as ex:
print(ex)
exit(1)
if len(sys.argv) == 4:
if sys.argv[1] == "encrypt": ##rsa encrypt <message> <key>
msg = sys.argv[2]
keyName = sys.argv[3]
key = readKeyFile(keyName)
key_public = (key[0], key[1])
msg_encrypted = encrypt(msg, key_public)
print("Encrypted msg: ", msg_encrypted)
if sys.argv[1] == "decrypt": ##rsa decrypt <cipher> <key>
cipher = int(sys.argv[2])
key = readKeyFile(sys.argv[3])
#with open(fileName, "r") as cipherFile:
# cipher = int(cipherFile.readline()) ##one line may make problems later with padding
msg = decrypt(cipher, key[2],key[0])
print("Decrypted message: ", msg)
def generateKeys(bits=64):
#Primes of size 32 bit random
#resulting in a 64-bit key mod
p = getPrime(int(bits/2))
q = getPrime(int(bits/2))
n = p*q
#print("n: ", n)
print("%d bit key" % n.bit_length())
#lamda(n) = LCM(p-1, q-1)
#Since LCM(a,b) = ab/GCD(a,b)
#gcd = math.gcd(p-1, q-1)
#print("GCD: ", gcd)
#lcm = abs((p-1) * (q-1)) / gcd
#print("LCM: ", lcm)
phi = (p-1)*(q-1)
#print("phi: ", phi)
#e exponant should be 1 < e < lamda(n) and GCD(e, lamda(n)) = 1 (coprime)
# recommended value is 65,537
e = 65537
d = pow(e,-1,phi)
#print("d: ", d)
print("---------------------------------")
print("public key (%d, %d)" % (n,e))
return n, e, d
def encrypt(message, publicKey):
msg_text = message
n = publicKey[0]
e = publicKey[1]
print("using n: {0}, e: {1}".format(n, e))
msg_number_form = int.from_bytes(msg_text.encode(),"little")
print("Message: %s or %d" % (msg_text, msg_number_form))
msg_encrypted_number_form = pow(msg_number_form, e, n) # c = msg^e mod n
return msg_encrypted_number_form
def decrypt(cipher, privateKey, n):
msg_encrypted_number_form = cipher
d = privateKey
msg_decrypted_number_form = pow(msg_encrypted_number_form, d, n) # m = c^d mod n
msg_decrypted = int(msg_decrypted_number_form)
try:
msg_decrypted = str(msg_decrypted.to_bytes(msg_decrypted.bit_length(), "little").decode()).strip()
except UnicodeDecodeError:
print("Cant decrypt properly")
return msg_decrypted
2020-04-15 23:05:03 +02:00
def getPrime(bits):
while True:
#Byte order "little" or "big" does not matter here since we want a random number from os.urandom()
x = int.from_bytes(os.urandom(int(bits/8)),"little")
print("trying: ", x)
if isPrime(x):
return x
2020-04-15 23:05:03 +02:00
def isPrime(number):
if number == 2:
return True
#if 2 devides number then num is not prime. pg.21
if number % 2 == 0 or number == 1:
return False
#largest integer less than or equal square root of number (K)
rootOfNum = math.sqrt(number)
K = math.floor(rootOfNum)
#Take odd D such that 1 < D <= K
#If D devides number then number is not prime. otherwise prime.
for D in range(1, K, 2):
if D % 2 == 0 or D == 1:
pass
else:
if number % D == 0 or number % 5 == 0:
return False
return True
2020-04-15 23:05:03 +02:00
def readKeyFile(keyName):
key = tuple()
with open(keyName, "rb") as keyFile:
tempkey = keyFile.readlines()
key = (int(tempkey[0].strip()), int(tempkey[1].strip()), int(tempkey[2].strip()))
return key
def saveKeyFile(key, fileName):
with open(fileName, "w") as keyFile:
keyFile.write("{0}\n{1}\n{2}\n".format(key[0], key[1], key[2]))
2020-04-15 23:05:03 +02:00
if __name__ == "__main__":
main()