hesham-rsa/rsa.py

79 lines
2.1 KiB
Python
Raw Permalink Normal View History

2020-04-15 23:05:03 +02:00
#!/usr/bin/python3
#program to generate rsa key pair using methods in EE-305
# Hesham Banafa
import math
import os
import decimal
2020-04-15 23:05:03 +02:00
def main():
#Primes of size 32 bit random
#resulting in a 64-bit key mod
p = getPrime(32)
print("p: ", p)
q = getPrime(32)
print("q: ", q)
n = p*q
print("n: ", n)
print("%d bit key" % n.bit_length())
#lamda(n) = LCM(p-1, q-1)
#Since LCM(a,b) = ab/GCD(a,b)
#gcd = math.gcd(p-1, q-1)
#print("GCD: ", gcd)
#lcm = abs((p-1) * (q-1)) / gcd
#print("LCM: ", lcm)
phi = (p-1)*(q-1)
print("phi: ", phi)
#e exponant should be 1 < e < lamda(n) and GCD(e, lamda(n)) = 1 (coprime)
# recommended value is 65,537
e = 65537
d = pow(e,-1,phi)
print("d: ", d)
print("--------------")
print("public key (%d, %d)" % (n,e) )
msg_text = "Hello"
msg_number_form = int.from_bytes(msg_text.encode(),"little")
print("Message: %s or %d" % (msg_text, msg_number_form))
msg_encrypted_number_form = pow(msg_number_form, e, n)
print("Encrypted msg: ", msg_encrypted_number_form)
msg_decrypted_number_form = pow(msg_encrypted_number_form, d, n)
print("Decrypted msg: ", msg_decrypted_number_form)
2020-04-15 23:05:03 +02:00
def getPrime(bits):
while True:
#Byte order "little" or "big" does not matter here since we want a random number from os.urandom()
x = int.from_bytes(os.urandom(int(bits/8)),"little")
if isPrime(x):
return x
2020-04-15 23:05:03 +02:00
def isPrime(number):
if number == 2:
return True
#if 2 devides number then num is not prime. pg.21
if number % 2 == 0 or number == 1:
return False
#largest integer less than or equal square root of number (K)
rootOfNum = math.sqrt(number)
K = math.floor(rootOfNum)
#Take odd D such that 1 < D <= K
#If D devides number then number is not prime. otherwise prime.
for D in range(2, K):
if D % 2 == 0:
pass
else:
if number % D == 0 or number % 5 == 0:
return False
return True
2020-04-15 23:05:03 +02:00
if __name__ == "__main__":
main()