2018-11-12 10:46:29 +01:00
|
|
|
|
|
|
|
from time import sleep
|
|
|
|
from picamera import PiCamera
|
|
|
|
from io import BytesIO
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2018-11-14 23:00:35 +01:00
|
|
|
import os
|
2018-11-12 10:46:29 +01:00
|
|
|
|
|
|
|
def init():
|
2018-11-12 16:16:58 +01:00
|
|
|
go = True
|
2018-11-12 10:46:29 +01:00
|
|
|
print('Initilizing Camera and cascade components..')
|
2018-11-12 11:26:55 +01:00
|
|
|
try:
|
|
|
|
camera = PiCamera()
|
|
|
|
camera.resolution = (640, 480)
|
|
|
|
sleep(2)
|
|
|
|
print('[ OK ] Camera')
|
|
|
|
except:
|
|
|
|
print('[ Error ] Can not initialize PiCamera')
|
2018-11-12 16:16:58 +01:00
|
|
|
go = False
|
2018-11-12 11:26:55 +01:00
|
|
|
|
|
|
|
try:
|
|
|
|
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
|
|
|
|
sleep(1)
|
|
|
|
print('[ OK ] CascadeClassifier')
|
|
|
|
except:
|
|
|
|
print('[ Error ] Can not load cascade File')
|
2018-11-12 16:16:58 +01:00
|
|
|
go = False
|
2018-11-12 11:26:55 +01:00
|
|
|
if (go):
|
|
|
|
print('Starting Photo loop..')
|
2018-11-12 16:16:58 +01:00
|
|
|
start(camera, face_cascade)
|
2018-11-12 11:26:55 +01:00
|
|
|
else:
|
|
|
|
print('closing')
|
2018-11-12 10:46:29 +01:00
|
|
|
|
2018-11-12 16:16:58 +01:00
|
|
|
def start( camera, face_cascade):
|
2018-11-14 23:00:35 +01:00
|
|
|
j = 0
|
2018-11-12 10:46:29 +01:00
|
|
|
while True:
|
2018-11-14 23:00:35 +01:00
|
|
|
#try:
|
|
|
|
camera.capture('img.jpg')
|
2018-11-12 11:26:55 +01:00
|
|
|
img = cv2.imread('img.jpg',1)
|
2018-11-14 23:00:35 +01:00
|
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
|
2018-11-12 11:26:55 +01:00
|
|
|
i = 0;
|
|
|
|
for (x,y,w,h) in faces:
|
|
|
|
i = i + 1
|
2018-11-14 23:00:35 +01:00
|
|
|
j = j + 1
|
|
|
|
|
2018-11-12 11:26:55 +01:00
|
|
|
roi_gray = gray[y:y+h, x:x+w]
|
|
|
|
roi_color = img[y:y+h, x:x+w]
|
2018-11-14 23:00:35 +01:00
|
|
|
try:
|
|
|
|
cv2.imwrite('train/'+str(j)+'.jpg',roi_color)
|
|
|
|
except Exception as ex:
|
|
|
|
print(ex)
|
2018-11-12 11:26:55 +01:00
|
|
|
print('Drawing on face ', i)
|
|
|
|
|
2018-11-14 23:00:35 +01:00
|
|
|
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
|
|
|
|
cv2.putText(img, recognize(roi_gray), (x, y), cv2.FONT_HERSHEY_PLAIN, 1.7, (255, 0, 0), 2)
|
2018-11-12 11:26:55 +01:00
|
|
|
cv2.imshow('image',img)
|
|
|
|
cv2.waitKey(100)
|
|
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
|
|
cv2.destroyAllWindows()
|
|
|
|
break
|
2018-11-12 10:46:29 +01:00
|
|
|
|
2018-11-14 23:00:35 +01:00
|
|
|
#except:
|
|
|
|
#print('[ Error ] Unexpected exception')
|
|
|
|
#print('Closing')
|
|
|
|
#break
|
|
|
|
|
|
|
|
def train(number):
|
|
|
|
|
|
|
|
train_path = 'train/'
|
|
|
|
face_recognizer = cv2.createLBPHFaceRecognizer()
|
|
|
|
images = []
|
|
|
|
labels = []
|
|
|
|
image_names = os.listdir(train_path)
|
|
|
|
for image_name in image_names:
|
|
|
|
if image_name.startswith("."):
|
|
|
|
continue;
|
|
|
|
image_path = train_path + image_name
|
|
|
|
image = cv2.imread(image_path)
|
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
images.append(gray)
|
|
|
|
labels.append(number)
|
|
|
|
print('training')
|
|
|
|
face_recognizer.train(images, np.array(labels))
|
|
|
|
face_recognizer.save('faces/hesham')
|
2018-11-12 10:46:29 +01:00
|
|
|
|
2018-11-14 23:00:35 +01:00
|
|
|
|
|
|
|
def recognize(image):
|
|
|
|
|
|
|
|
subjects = ['','Hesham','Unknown']
|
|
|
|
face_recognizer = cv2.createLBPHFaceRecognizer()
|
|
|
|
face_recognizer.load('faces/hesham')
|
|
|
|
img = image.copy()
|
|
|
|
label= face_recognizer.predict(img)
|
|
|
|
if label[0] == 1:
|
|
|
|
return 'Hesham'
|
|
|
|
else:
|
|
|
|
return 'Unknown'
|
|
|
|
|
|
|
|
|
2018-11-12 10:46:29 +01:00
|
|
|
init()
|
|
|
|
|
2018-11-14 23:00:35 +01:00
|
|
|
|